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Chapter 1

Introduction

1.1 Context

The Functional Machine Calculus, put forward by Heijltjes (2021) (referred to as the FMC) is a novel,
lambda-calculus like model of higher-order computation integrating computational effects while maintain-
ing confluence. In the unpublished paper the author puts forward ideas about a potential type system for
the language, which the following thesis explores. The thesis discusses an implementation and strategy
for the type system, together with a strategy for an inference algorithm.

Motivation As highlighted by Heeren, Hage and Swierstra (2002), type systems are an indispensable
tool present in contemporary higher-order, polymorphic languages. Type systems enable the detection of
ill-typed expressions at compile-time, making a major contribution towards the popularity of languages like
Haskell and ML. By enabling language safety (as defined by Cardelli (1996)) and adding an ergonomic
dimension to the use of a language, type systems are a major contributor to the (fearless) use of models
of computation.
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Chapter 2

Background

The following chapter introduces a selection of the literature, and research undertaken building towards
the type system proposal.

2.1 Expressing Computation

2.1.1 Early History

As pointed out by Barendregt Henk (1994), the search for a universal language can be summarised by
Leibniz’s ideal:

1. Create a "universal language" in which all possible terms can be stated.

2. Find a decision method to solve all the problems stated in the universal language.

Historically, a formal notation for abstraction in computation can be traced back to Giuseppe Peano
(1889). In his book on the axioms or principles for arithmetic, he uses the notation α[x ] to represent the
term α as a function depending on the variable x . Peano proposes the notation φ = α[x ] and the equation
φx ′ = α[x ]x ′, with the right hand side representing the result of substituting x ′ for x in φ. However, this
notation, did not gain momentum, with Peano proposing new notations including αx̄ and α|x .

In subsequent years further systems have been proposed by mathematicians in their writings, with
notable mentions Gottlob Frege (1891), Burali-Forti (1894) and, Russell and Whitehead (1913). However,
as made clear by Cardone and Hindley (2016), none of the mentioned authors offer a formal definition
for the operations of substitution and conversion.

In the 1920’s, Moses Ilyich Schönfinkel (1924) sets the foundations of combinatorics, a mathematical study
interested in removing the need for quantified variables in mathematical logic. Following Schönfinkel’s
writing, J. von Neumann (1925) publishes his PhD thesis on the axiomatisation of set theory, and in Curry
(1930) further develops the concept of a combinator.In his thesis, Curry includes the first formal definition
of conversion, and a finite set of axioms form which he proved the admissibility of rule:

(ζ) if Ux = Vx and x does not occur in UV , then U = V .

2.1.2 Untyped Lambda Calculus

Published by Church (1932), the Lambda Calculus (λ calculus) is a type-free logic with unrestricted
quantification, and no law of excluded middle. As pointed out in Cardone and Hindley (2016) the
motivation behind its development was Church’s search for a foundation for logic more natural than
Russell’s type theory or Zermelo’s set theory, that would not contain free variables. Shortly following the
publishing, a contradiction was found in the paper and was subsequently revised by Church (1933).

Formally, the λ calculus is a mathematical system of expressing computation based on a minimal
expression (or term) based language. The expressions are built up from inductively defined terms which

8
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can take the form of an abstraction, an application or a variable. Written in the Backus-Naur form (BNF)
these are:

Definition 2.1.1.
M, N ::= x | λx .M | MN,

where x is a variable, M, N are terms, λx .M is an abstraction, and MN is an application. In a non-λ
calculus context the abstraction λx .M can be though of as an anonymous function f(x) → M while the
application MN can be though as replacing the x of the anonymous function of N, (i.e. f(N) where
f(x) → M).

Computation in the λ calculus is described by the following rules:

Definition 2.1.2. α conversion is the method of replacing bound variables with fresh (unused) ones.
Through the use of α conversion, λ calculus establishes a natural equivalence between terms called α
equivalence noted as =α. Two terms are said to be α equivalent if they are of the same form.

λx .λy .xyz =α λy .λx .yxz =α λm.λn.mnz

Through the use of α conversion variable capture is avoided - substituting term with α equivalent ones,
terms can avoid wrongfully binding free variables.

Definition 2.1.3. β reduction is the equivalent of computation in the λ Calculus. Terms of the form
(λx .M)N (called redexes) are β reduced through the substitution of all bound occurrences of variable x in
M with N. The operation of substitution is noted as:

(λx .M)N →β M[N/x ],

Where: →β reads as one β reduction step and, M[N/x ] reads as replace all bound occurrences of x
with N in M. Note that the substitution is done avoiding variable capture.

(λx .λy .(λx .x)yx)a b →β (λy .(λx .x)ya)b →β (λx .x)b a→β ba

Definition 2.1.4. η reduction is the dropping of an abstraction over a function, resulting in an α
equivalent term to the term we started from.

λx . fx →η f | (x /∈ FV (f )), where FV (f ) is the set containing all the free variables of f .

β reduction is confluent when working up to α conversion - meaning that terms can be reduce in any
order up to α equivalence, without affecting the final outcome.

Definition 2.1.5. Having discussed β reduction, we can now define the β normal form of a λ term.
which is reached when a term can no longer be reduced. Thus, the normalisation of a λ term can be
expressed as:

T1 →β T2 →β ...→β Tn

Tn is the normal form of T1 if @Tn+1 such that Tn →β Tn+1

Based on their property to normalise, we can now define two classes of terms:

Definition 2.1.6. Weakly normalising terms have a terminating sequence, that after a finite amount of
steps can be reached. Thus ∀ w , with w a λ term with w weakly normalising, ∃w ′ such that w →β∗ w ′

and w ′ is in β normal form.

Definition 2.1.7. The second class is that of strongly normalising terms, which do not have an infinite
sequence of terms the initial term β reduces to. Strongly normalising terms also have the property of
weak normalising terms of having a normal form. Thus we can write:

a term M is strongly normalising if:
@ an infinite sequence of terms M1, M2, . . . such that
M →β M1 →β M2 ... .
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Not all terms are normalising in the untyped lambda calculus, leading to its non-deterministic property.
Fixed point combinators are a good example of a term without normal form.

Definition 2.1.8. At the end of Church (1933) introduced the idea of the integers as λ terms:

1 ≡ λx .λy . xy , n =β

n times

λx .λy . x(. . . (xy). . . ), Succ = λx .λy .λz . y(xyz).

Definition 2.1.9. Similarly he introduced notions for Church booleans:

λx .λy . x = True λx .λy . y = False

Definition 2.1.10. And for the Church if operator:

λb.λx .λy . bxy = if

Example 2.1.11. We can see how applying if to True works with an example. Let M, P be two λ terms
in:

if True M P = (λbxy . bxy)(λxy . x)MP →β (λxy . (λxy . x)xy)MP →β∗ (λxy . x)MP →β∗ M

Definition 2.1.12. Fixed points of the form Yf = f . Yf use recursion to achieving looping in the λ
calculus.

Church proved that the λ calculus is a universal model of computation, with capabilities equivalent to that
of a Turing Machine.

Definition 2.1.13. As pointed out in Barendregt (1984) although β reduction is non-deterministic - λ
calculus maintains confluence. As illustrated in Figure 2.1.13, this property of the λ calculus means that
the order in which the terms are β reduced does not make a difference to the outcome of the calculation.
Although not an intuitively evident fact, the property was proven in Church and Rosser (1936) and is also
known as the Church-Röser Theorem.

Given A, A′, B, C are all λ terms:

(A→β∗ B) ∧ (A→β∗ C )⇒ ∃ A′, (B →β∗ A′) ∧ (C →β∗ A′).

A

B C

A′

Figure 2.1: Confluence of Lambda Calculus

Theorem 2.1.14. Confluence of the λ calculus is lost with the addition of side-effects.

Example 2.1.15. One example is the addition of rnd, a function that returns a random church numeral.

rnd →β Nx ,

x ∈ N, Nx ∈ Church Numeral.
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Looking at the application of rnd to the combinator λx . xx , which depending on evaluation strategy (as
defined at 2.1.17, 2.1.19) will reduce to two different normal forms - which are then impossible to further
reduce to a common term.

(λx . xx) rnd→CBV
β (λx . xx) Nx →β Nx Nx →β Nxx , (1)

→CBN
β rnd rnd →β Nx Ny →β Nxy . (2)

Given that there is a probability that x 6= y then (1) 6= (2). By definition (1) and (2) are in their normal
form, thus @ λ term N ′ such that (1)→β∗ N ′ ∧ (2)→β∗ N ′. We can conclude that the confluence of the
term calculus has been lost, and furthermore that different reduction strategies yielded different normal
forms. (q.e.d)

2.1.3 Evaluation

Reduction Strategy

As we have seen, different reduction strategies are confluent as long as we do not introduce side-effects
into the λ calculus. Let us define these strategies by first introducing the two major categories and then
examples.

Definition 2.1.16. Based on the strictness of the strategy are two main types of evaluation strategies:

1. Strict evaluation evaluates all of the redexes inside a term, before the body of the function is
evaluated,

2. Non-Strict evaluation does not.

Definition 2.1.17. Call-by-name, CBN, lazy-evaluation or Normal Order is a non strict evaluation
strategy that does not evaluate the terms inside an abstraction before it is applied. The order in which
redexes get evaluated is: outer most, left most first.

Theorem 2.1.18. CBN always produces a normal form if the term has one.

A drawback of CBN is that due to its laziness it can amass large (a lot of memory/space needed for a
computer, or effort for a human) terms with many nested redexes, that can become "hard" to manipulate.

Definition 2.1.19. Call-by-value, CBV or eager evaluation is a strict evaluation strategy that evaluates
all the redexes of a term, before a term gets to be applied. The evaluation strategy evaluates inner-
most left most. As it stands, it is the most commonly used evaluation strategy in current programming
languages.

Definition 2.1.20. Weak head normal form (WHNF) is a non strict evaluation strategy that reduces a
term to its data constructor (or lambda abstraction) - allowing for sub-expressions to remain unevaluated
inside the term.

Example 2.1.21.
(1) λx . (λx . xx)x is in WHNF,
(2) E (λx . (λx . xx)) is not in WHNF.

2.1.4 Computational Effects

At this point the contextualisation of computational effects in both semantics and computers must be
introduced.

Definition 2.1.22. A computational effect is the result of a computation - i.e. reduction of a redex,
application.

Definition 2.1.23. A computational side-effect as defined by Plotkin and Power (2004) is the result of
a computation that is done on "the side" while polymorphically computing something else, or in the case
of a command nothing at all.

Example 2.1.24. Examples of computational side-effects:

1. Reading from an input, a file, a keyboard, or a mouse,
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2. Reading, writing or allocating memory,

3. Controlling program continuation with transfers ((go to) and long jumps).

Definition 2.1.25. In Gerald Jay Sussman (1997), a computer program is defined as being made from
three components: Modularity, Objects, State. If modularity is representative of the logical manner in
which a program is divided, and objects are the entities we find within each module, then state is the
information stored by each of the objects inside the modules.

Definition 2.1.26. Computational effects in a computer program can then be defined as actions that
modify the state of the objects - implicitly modifying the state of the module. Seen in a reverse order,
objects and modules are just a higher abstraction and categorisation of state.

Definition 2.1.27. Referential transparency, of an expression or term is the relative property of a term
of not introducing side-effects at its evaluation. (as seen at Example 2.1.15).

Working With Effects

Monad

In working with effects, Moggi (1989) proposes that category theory should be taken as the general
theory of functions and develop categorical of computations based on monads. This methodology comes
from the belief that "category theory comes, logically before the λ calculus" - leading to Moggi considering
a categorical semantics of computation rather than trying to work on the βη - conversion rules.

Following this line of thought comes the proposals of using monads to allow a pure functional program to
maintain referential transparency when modelling functions with computational effects.

Definition 2.1.28. A monad is an abstraction(based on a category theory endofunctor ), that provides
two methods: a bind operation that wraps the argument within the monad, and a compose method that
allows it to compose function with monadic output.

With the use of a monads, comes a way to encapsulate information and work with it in a sequential
manner (example: IO Monad of Haskell) with the information inside the wrapper of the monad itself. In
Plotkin and Power (2002) the authors then model these effects algebraically, focussing on the notions of
global and local state, giving good examples of proofs of the soundness of these monads of interest.

Thunk

Definition 2.1.29. Thunk is a subroutine used to introduce additional computation into another subrou-
tine. As defined in Ingerman (1961), it can be thought of as a primitive type of closure. Thunks are the
main method used by (most) CBV programming languages to achieve CBN like operational effects.

Definition 2.1.30. A closure is a technique of binding a name to a term within a locally defined, or
scoped context (also known as scope). This allows for terms to be provided with their own environment -
for example allowing a function to access captured variables through the use of the locally copied values.

As pointed out in Chapter 1, the FMC proposes a new strategy to close the above gap between the CBV
and CBN which is, integrated as part of its syntax.

Semantic Styles

Definition 2.1.31. In order to discuss formally about computational effects, a definition of how the terms
are evaluated must be formulated (language semnantics). In Moggi (1989) mentions three ways of
formalising the semantics, also discussed in Pierce (2002):

1. Operational semantics specify the behaviour of the language by defining a simple abstract
machine for it. A state of the machine is representative of a term in the language, and the transition
of the machine from is given by a transition function that gives the machine either the next state or
a halting state. If given two or more machines for the same language, the resulting terms are equal
starting from an equal term, then we have a proof of equality.

2. Denotational semantics offers a higher level view of the language, where it gives a mathematical
structure to the intended model - for example defining mathematical structures numbers, or
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functions. Then equivalence is established by trying to establish equivalence between terms. This
approach allows one to argue more about the domain specifics and logic of the language, rather
than the low-level implementation details of operational semantics.

3. Axiomatic semantics gives a class of possible models for the language, by taking the axioms of
the models and forming a language out of them. Then, the equivalence is denoted by proving that
two terms denote the same object in all the possible models.

Historical context

Pierce (2002) makes it clear that historically (70’s, 80’s) Operational semantics was considered a weaker
style of giving the semantics of a language than its counterparts. But with the work of Plotkin (1981),
Kahn (1987) and Milner, operational semantics is currently being used with equal consideration, and
furthermore it has been proven to avoid many of the mathematical and logic complication that the latter
two introduce in the description of a language’s semantics.

Furthermore, in Streicher and Reus (1998) discusses how deriving an abstract machine based on
the Krivine machine for a language based on its continuation semantics, and giving its denotational
semantics is useful in defining the behaviour of a functional programming language. A relevant thing
pointed by Moggi (1989) is that the equivalence of a program A→ B with a total function from A to B
in denotational vs operational semantics is difficult to prove - since this identification can wipe out the
effects (behaviour like non-termination, non-determinism or side-effects) inherent in a program.

2.2 Type Systems

Logistics of Type Systems

Why Types?

An aspect that algorithms, programs, proofs and any system has in common is that with increasing
complexity and length, comes an increase in the challenge of keeping errors and mistakes out of the
objects themselves. Types and type checking offer an effective, static strategy to check the consistency
and well formulation of the above mentioned objects. Pierce (2002) and Cardelli (1996) provide an
extensive discussion of why the study of types and type systems matter in the world of programming.

History of Types

As mentioned in Coquand (2018), the theory of types was introduced by Russell, in order to deal with
contradictions he found in his account of set theory, and was published in 1903 in "Appendix B: The
Doctrine of Types". The addition of types is a natural manner in which one can distinguish between
kinds of objects in logical reasoning and computing. Types are an indicator that certain terms (formulas,
functions or relations) can only be replaced with terms of an equivalent typing. (The Lambda Calculus
(Stanford Encyclopedia of Philosophy) (n.d.)) For a time-capsule of the type systems development see
Fig. 2.2.

Practical Type Systems Expectations

There are specific expectations of a type system from a practical point of view of a user, for them to be fit
for purpose. Cardelli (1996) defines the expectations as being:

1. Decidably verifiable - there should exist an algorithm (typechecker ) which can check that the
terms are well typed;

2. Transparent - upon failing to find a type, it should be clear where and why,

3. Enforceable - type checks should be statically checked as much as possible.

4. Inferable* - to the above I add the fact that a general expectation is that the typechecker should
have the capacity to infer the most general type, statically at compile time. This is as touched upon
in Damas (1984) a good exemplification of the type growing from the semantics of the language,
rather than being an artificial add-on.
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Figure 2.2: Timeline of types in computer science and logic from Pierce (2002)

Type Systems Formalisms

Type systems are described and based around a particular formalism. The elements of type system
formalisms are: Judgements, Type Rules, and Type Derivations.

Definition 2.2.1. Judgements are rules of the type Γ ` ℵ, where we say Γ entails ℵ. Γ is a typing context
or typing environment, that can be represented by a set of variables and their types (see Definition 2.2.9),
and ℵ is an assertion.

Definition 2.2.2. Type rules assert the validity of an assertion. A valid assertion is by definition
equivalent with a well typed term. (see Definition 2.2.6). A collection of type rules is called a formal type
system.

Theorem 2.2.3. If the typing context Γ does not contain any elements, (i.e. Γ = ∅) then the environment
Γ is well formed.

Definition 2.2.4. Type derivation is a tree of logically connecting judgements stemming from one term.
(see Example 2.2.5) They can be created with the use of type variables, which maintain generality -
which is the definition of type polymorphism.

Example 2.2.5. A well typed type derivation for the λ→ term (λx . x)(λx . x) based on rules defined
at Definition 2.2.9. The type variable δ can be replaced with any other type variable, as long as it is
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consistently replaced across the derivation.

x : δ → δ ` x : δ → δ

` λx . x : (δ → δ)→ δ → δ

x : δ ` x : δ

` λx . x : δ → δ

` (λx . x)(λx . x) : δ → δ
.

The Curry–Howard-Lambek correspondence

A property also called The Curry-Howard isomorphism establishes a direct link between three seemingly
unrelated fields, namely the correctness of a computer program, mathematical proofs and cartesian
closed categories. The correspondence is based on the observation that families of seemingly unrelated
formalisms - namely, the proof systems on one hand, and the models of computation on the other - are in
fact the same kind of mathematical objects. This correspondence is of high importance when considering
programs as proofs.

Definition 2.2.6. The Curry-Howard-Lambek define well-defined morphisms as abiding the following
rules where the categorical morphism f : α → β is replaced with sequent calculus based notation
f : α ` β:

id : α ` α
(identity)

t : α ` β u : α ` γ
u ◦ t : α ` γ

(composition)

? : α ` >
(unit type)

t : α ` β u : −α ` γ
(t, u) : α ` β × γ

(cartesian product)

π1 : α× β ` α
(left projection)

π2 : α× β ` β
(right projection)

t : α× β ` γ
λt : α ` β → γ

(currying)
eval : (α→ β)× α ` β

(application)

2.2.1 Simply Typed Lambda Calculus

Context

An initial version of the typed λ calculus(λ→) was introduced by Alonzo Church in 1940. Its creation was
an attempt to constrain and avoid paradoxical uses of the untyped lambda calculus. As pointed out by
Baxter (2014), the simply typed λ calculus is the theoretical basis for typed, functional programming
languages, with most typed systems handling typing similarly to the λ→.

Definition 2.2.7. Bakus Naur Form Grammar for a simple type can be written as:

τ ::= o | τ → τ .

Where :

o is the base type,
τ is a type,

τ → τ is a function type.

Definition 2.2.8. If use these new constructs to constrain the terms of the λ Calculus we get the definition
for the λ→ calculus. In Bakus Naur Form:

M ::= x | λxτ . M |MN
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where :

τ is a type.
x is a variable.

λxτ . M is a typed abstraction.

λxτ . M ⇔ λx : τ . M(notations are equivalent).
MN is an application.

Typing rules

Definition 2.2.9. The typing rules for the λ→:

Γ,` x : τ ` x : τ
var .

Γ, x : τ ` M : σ

Γ ` λxτ .M : τ → σ
abstr .

Γ ` M : τ → σ Γ ` N : τ

Γ ` MN : σ
app.

Where :

M : τ ⇔ M has type τ ,

Γ⇔ context - a finite function from variables to types,

Γ = x1 : τ 1, x2 : τ 2, x3 : τ 3, ..., xn : τn,

Γ, x : τ ⇔ context τ extended so x has type τ ,

Γ ` x : τ ⇔ Typing judgment,
M : τ → σ ⇔ abstraction M receives type τ and returns type σ.

Theorem 2.2.10. Given the Subject Reduction property of λ→ terms ( β reduction gives another λ→

term), it has been proven (Tait, 1967) that typeable terms on λ→ are all strongly normalising. This is why
λ→ is a deterministic system of computation, and algorithms written in λ→ are decidable, thus not Turing
Complete. Furthermore fixed point combinators cannot be captured by a type in the λ→ system.

2.2.2 Hindley Milner Type System

Motivation

Created by Hindley (1969), and further defined by Miller (1988), the Hindley Milner Type System, is
a classical type system with parametric polymorphism, a closed proof formulated in Damas (1984),
completeness property, and the ability to infer the most general type without type annotations. As
specified by Miller (1988) the system has at its core simplicity, inference, and polymorphism.

In the future research, the type system’s unification algorithms are a good source of inspiration and an
adequate departure point, with multiple inference algorithms and richness in literature.

Language

Definition 2.2.11. As described in Heeren, Hage and Swierstra (2002) we first need to introduce the
lambda language that the Hindley Milner type systems works on top of. This is a simple λ calculus
language to which we add the let construct.

Terms, E : = x (variable),
|E1E2 (application),
|λx → E (abstraction),
|let x = E1 in E2 (let).

To this simple language we add types.

Type, τ := α| Boolean| Integer | String | τ → τ | ∀⇀
α.τ(polytype/typescheme).
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Definition 2.2.12. A type scheme is a type vector ⇀
α in which a set of polymorphic type variables

⇀
α = α1, α2, · · · are bound to the universal type quantifier. Although the variables have an order in the
type scheme, this order is of no significance.

Definition 2.2.13. Hindley Milner typing rules, as presented in Damas (1984) are:

Γ ` x : τ
Var . (x : τ ∈ Γ)

Γ ` E1 : τ1 → τ2 Γ ` E2 : τ1

Γ ` E1E2 : τ2
App.

Γ/x ∪ {x : τ1} ` E : τ2

Γ ` λx .E : τ1 → τ2
Abs.

Γ ` E1 : τ1 Γ/x ∪ {x : generalise(Γ, τ1)} ` E2 : τ2

Γ ` let x = E1 in E2 : τ2
Let.

Damas (1984) provides an extensive description of the inference procedure of finding adequate substitu-
tions, and a proof of how this finds the most general type for the term. The manner in which this proof is
developed offers a good point of reference.

2.2.3 λµ calculus

The proposal of Parigot (1992) is to decompose the λ calculus into two types of variables: λ variables
and µ variables, with the latter being used to name terms in the first. λµ calculus maintains confluence
and is able to be typed with the same rules as the λ→ with the addition of a naming rule.

t : Π ` A, Σ

[α]t : Π ` Aα, Σ

e : Γ ` Aα, ∆

µα.e : Γ ` A, ∆

The study of the calculus is of interest due to its similar nature to the poly-lambda calculus of Heijltjes
(2021) and could provide an intermediary step to the fully dependent type system for the FMC. Most
importantly, the λµ as defined in Parigot (1992) calculus provides a bridge between constructive and
classical proofs - and understanding the proof of this could lead to a similar property being embedded
into the FMC.

2.2.4 Dependently Typed Systems

Definition 2.2.14. A dependent type system allows type constructors to depend on different terms or
other type constructors.

In the analysis of type systems, Barendregt (1993) distinguishes between several typologies of type
systems (graphically portrayed at Figure 2.3), all stemming from the λ→ (simply typed lambda calculus):

Figure 2.3: Barendregt’s Lambda Cube as depicted by ?



CHAPTER 2. BACKGROUND 18

1. systems where terms can bind types (polymorphism) - on the y axis,

2. systems where types can bind terms (dependent types) - on the x axis,

3. systems where types can bind types (type operators or type constructors) - on the z axis.

Motivation

As programming languages and the field of computer science expands, so does the need for reliability
and correctness. As discussed, in Subsection 2.2 type systems are a proven static method of achieving
the two aforementioned goals. As systems become more complex, the expressive requirements needed
from the type system also increase. In an ideal scenario, types would become a first class citizen of the
language, allowing the programmer to freely mix and use terms and types.

It should be observed, that the minimal syntax of the FMC and its ease of parametrisation across multiple
variables (types of locations, types of variables, types of machines, types of output etc.), seems to offer
the perfect background for a fully dependent type system; making use of the creative possibilities of the
FMC.

2.2.5 Idris

Dependent types and specifically full dependent types offer no restriction on the values that a type
can be defined by, thus allowing for complete flexibility in type definitions. Thus using, lessons learned
from the implementation of other dependently-typed programming languages like Coq, Agda, or λΠ
Baxter (2014).

To give an example of this mixing of types and terms we can look at the syntax proposed by Brady (2013)
in the implementation of Idris, a dependently typed programming language.

Terms, t ::=c (constant)
| x (variable)
| b. t (binding)
| tt (application)
| T (type constructor)
| D (data constructor)

Constants, c ::=Typei (type universes)
| i (integer literal)
| str (string literal)

Binders, b ::=λx : t (abstraction)
| let x → t : t (let binding)
| ∀x : t (function space)

Type inference in Idris is done by using a cumulativity rule, while Girard’s paradox is avoided by
parametrising the Type of Types with the help of a universe level, and an ordering of types based on
higher or lower levels. The type checker normalises all of the terms and compares them, and the default
normalisation rules is based on a CBV strategy. Furthermore, during typechecking, Iris has a method
of checking for totality of functions, while similarly to Haskell, partial functions are allowed to run (a
divergence from most dependently typed languages).

There are many aspects not touched upon and embedded complexity which is apparent in the differences
between the FMC and Idris - the completely different syntax and structure being obvious. But studying
existing systems and learning from the development process can offer an insight into good strategies.
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The manner in which these strategies could be applied for the sequential types, is one of the proposed
objectives of the research.

2.3 FMC - A new λ calculus

2.3.1 Semantics

Definition 2.3.1. As defined in Heijltjes (2021), the FMC’s simple syntax:

M, N ::= ? | x . N | [M]a. N | a〈x〉. N.

Where:
? : an end or nil,

x . N : a (sequential) variable x ,

[M]a. N : an application or a push action on location a,

a〈x〉. N : an abstraction or a pop action on location a which binds variable x in N.

Definition 2.3.2. The Functional Abstract Machine (FAM) is a Krivine Machine that has states (S , N)
where N is a FMC term and S : A→ FMCN is the memory function assigning to each location a ∈ A a
stack of FMC terms Sa ∈ FMCN. Empty stacks are given as εa, and a stack with top element M and
remaining stack Sa is given as Sa.M. The stack Sa at position a is separated from the remaining memory
S as S ; Sa.

Definition 2.3.3. β Rewrite reduction in the FMC and is given by the rule:

[M]a. A1. . . An. a〈x〉. N →β A1. . . An. {M/x}N,

where actions A1. . . An are not on the location a, and substitution {M/x}N is a capture avoiding
substitution replacing variable x with term M in term N defined by the rules at Definition 2.3.6 and capture
avoiding application of M. N as defined at Definition 2.3.7.

Definition 2.3.4. Reduction takes place separately on each location and the regular λ-calculus is
embedded via a reserved location λ, which is usually omitted for brevity.

Example 2.3.5. Using Definition 2.3.8 we can permute a term passed all the terms that do not occur on
the same location:

[M]a. A1. . . An. a〈x〉. N ∼ A1. . . An. [M]a. a〈x〉. N,

if A1. . . An do not occur on location a.

Definition 2.3.6. Capture avoiding substitution in the FMC is defined as:

{L/y}? ∆
= ?,

{L/y}y . N
∆
= L. {L/y}N,

{L/y}x . N
∆
= x . {L/y}N,

{L/y}[M]a. N
∆
= [{L/y}M]a. {L/y}N,

{L/y}a〈y〉. N
∆
= a〈y〉. N,

{L/y}a〈x〉. N
∆
= a〈z〉. {L/y}{z/x}N where z is fresh.

Definition 2.3.7. Capture avoiding application in the FMC is defined as:

? . N
∆
= N,

(x . M). N
∆
= x . (M. N),

([L]a. M). N
∆
= [L]a. (M. N),

(a〈x〉. M). N
∆
= a〈z〉. (({z/x}M). N) where z is fresh.
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Definition 2.3.8. Terms are considered modulo α equivalent, if after permuting operations on other
stacks, the terms are reflexively equal. The operation of permuting non interacting terms is notated with
∼.

Iff location a 6= location b,

[M]a. [N]b. P ∼ [N]b. [M]a. P,

a〈x〉. [N]b. P ∼ [N]b. a〈x〉. P if x /∈ freeVar(N),

a〈x〉. b〈y〉. P ∼ b〈y〉. a〈x〉. P.

Example 2.3.9. An example of modulo α equivalent terms would be terms M, N where

M = [1]a. [1]b. [1]c and N = [1]b. [1]c . [1]a.

Definition 2.3.10. For brevity we omit the trailing ? of a term - thus x . ? is written as x and M. P. ? as
M. P.

Definition 2.3.11. We call sequentiality the decomposition of variable x into a variable with continuation
x . N and an end of instructions construct ? - so that the original variable constructor is recovered as x . ?.

Example 2.3.12. Sequentiality is one of the main features of the FMC, allowing the interfacing of
CBN and CBV and the easy choice between the two. This is best portrayed by revisiting the example
highlighting the non confluent manner in the absence of the sequentiality property:

a := 2; (λx .!a)(a := 3; 5) 7→∗cbn 2

7→∗cbv 3

With sequentiality, we can now build the term specifically to get either of the results, as we wish.

a := 2 . t := (\\x .!a) . p := (a := 3.5) . ?p . ?t p . ?a . print →β∗ [2]out, (cbn)

a := 2 . t := (\\x .!a) . p := (a := 3.5) . !p . ?t p . ?a . print →β∗ [3]out; 5 on the spine. (cbv)

Theorem 2.3.13. The constructs of location (2.3.1) and sequentiality (2.3.11) are independent and
conservative and can be negated by forcing A = {λ} (where λ is the location of the main stack),
respectively forcing sequential variables and ? to always occur together.

Theorem 2.3.14. The FMC maintains confluence under both cbn and cbv reduction strategies.

2.3.2 Encoding Effects

Definition 2.3.15. Effects are encoded in the FMC calculus as operations on pre-defined locations.

Definition 2.3.16. Input is encoded as a pop action on location in ∈ A, and is notated as in〈x〉 where x
is a variable in the main stack.

Definition 2.3.17. Output is encoded as a push action on location out ∈ A, and is notated as [x ]out
where x is a variable in the main stack. No pop action can be effectuated on out.

Definition 2.3.18. Higher Order Mutable Store is a subset C ⊆ A of locations designated as storage
cells, whose stack can only hold at most one value. The operations are update c := M. N which will set
the cell c with value M and read! !c which reads and executs the value at location c . The encodings are

c :=M. N
∆
= c〈_〉. [M]c . N

c
∆
= c〈x〉. [x ]c . N

Where _ is a fresh variable that does not occur in M or N which is immediately discarded.

Example 2.3.19. A good example would be the encoding of a function that takes to arguments and
returns the sum.

f : = (\\x . \\y . x + y). !f 2 3. print would print 5

where the term parses to
f 〈f 〉. [〈x〉. 〈y〉. [y ]. [x ]. +]f . [3]. [2]. f 〈f 〉. [f ]f . f . 〈print〉. [print]out
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Definition 2.3.20. Non-deterministic and probabilistic computation is encoded as a pop action on
locations nd ∈ A respectively rnd ∈ A. The actions nd〈x〉. N and rnd〈x〉. N bind the variable x to a
Boolean value in Church encoding T = λx .λy . x for True or F = λx .λy . y for False with the one from
location nd being non-determistically generated and the one from location rnd being deterministically
generated.

Definition 2.3.21. By using nd , rnd locations we can then encode traditional non-deterministic sum
+ and fair probabilistic sum ⊕.

N + M
∆
= nd〈x〉. xMN

N ⊕M
∆
= rnd〈x〉. xMN

Example 2.3.22. Writing a random number to the standard output would be done by the term:

rnd〈x〉. [x ]out,

while reading from the stdin and storing the information in a location b would be done by the term

in〈a〉. [a]b.

Definition 2.3.23. Values and commands are encoded as follows:

• Values - are characterised by the machine terminating with an abstraction, or a term.

• Commands - are characterised by the machine terminating with an end (?).

To be able to distinguish between errors and normal execution, the proposal is that these returned values
should be located on the λ location, but not on the main sequence of the term - the spine.

Example 2.3.24. The execution of the term a〈−〉. [1]a. a〈x〉. [x ]. 〈print〉. [print]out would:

1. a〈−〉 Initialise position a,

2. [1]a Push 1 to position a,

3. a〈x〉 Bind 1 (from the last position of stack a) to variable x ,

4. [x ] Push the contents of variable x to the λ stack,

5. 〈print〉 Bind the contents from the λ stack to variable print and

6. [print]out Push the contents of variable [print] to location out.

At the end of this run the machine would terminate with ? on its λ stack, representing a successful
operation of the type ?⇒ out(int).

Example 2.3.25. The evaluation of the term M = in〈x〉. + 2 x on input 3 would terminate with a 5 on the
λ stack which is representative of an integer result, thus an integer value. The type of the operation
would be (Int)in ⇒ (Int). This term could be composed with a term N = 〈print〉. [print]out of type
(Int)⇒ (Int)out leading to an operation of the type (Int)in⇒ (Int)out characterised by ? on the λ stack.

Example 2.3.26. Finally the current proposal highlights that the operation in〈x〉. x . y could be treated as
an error, as both x and free variable y remain on the main spine. To this proposals of treating errors as a
separate location error or a new action parametrised location at position out of the type error .$out could
be added.
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FMC Type System

Overview of pre-existing proposal

The Heijltjes (2021) proposed type system requires full typing information to be added to the definition of
a program, in order for a type check. This is not practical, and furthermore could prove cumbersome
going forward. This observation leads naturally into the need for a inference based static type system -
which intuitive and precedent based information (the success of Haskell, and Rust) would lead to a better
ergonomic and safety of programming in the language.

3.1 Overview

The dissertation’s proposed type system builds upon the Poly Types as defined by Heijltjes (2021).
To make clear the similarities and differences, the paper will reintroduce some of the basic concepts,
building towards the implementation and design decisions.

Lambda calculus simple types are not suitable for the FMC. But, following operational considerations
leads to a simple conjunction-implication system without primitive monadic functors. The system is
parametrised on locations - adequately modelling FMC’s operational semantics. Finally, the proposed
system semantically defines a cartesian closed category.

Definition 3.1.1. Sequent is a mathematical general condition assertion of the form: A1, A2, ...Am `
B1, B2, ...Bn, where: A1, A2, ...Am are called "antecendents" and B1, B2, ...Bn are called "consequents".
The expression is read as: if all the antecendents are true, then at least one of the consequents are true.
This style of logical reasoning has its roots in Sequent Calculus.

3.1.1 Typed Sequential Lambda Calculus

Definition 3.1.2. sequential types are an appropriate proposal to be used with the sequential λ-
calculus:

ρ, σ, τ ::= σn...σ1 ⇒ τ1...τn

Where: ρ is a type, consisting of a vector σn ... σ1 of antecedents and a vector τ1 ... τn of precedents.
The concatenation of types can be interpreted with the use of standard implication and conjunction as:

ρ = σn ∧ ... ∧ σ1 → τ1 ∧ ... ∧ τn.

22



CHAPTER 3. FMC TYPE SYSTEM 23

Definition 3.1.3. The new typing rules for the sequential type system are:

Γ ` ? :
⇀
τ ⇒

↼
τ
?

Γ, x :
↼
ρ⇒

⇀
σ ` N :

↼
σ

↼
τ ⇒

⇀
υ

Γ,` x :
↼
ρ⇒

⇀
σ ` x . N :

↼
ρ
↼
τ ⇒

⇀
υ

var .

Γ, x : ρ ` N :
↼
σ ⇒

⇀
τ

Γ ` 〈x〉. N : ρ
↼
σ ⇒

⇀
τ

abs.

Γ ` M : ρ Γ ` N : ρ
↼
σ ⇒

⇀
τ

Γ ` MN :
↼
σ ⇒

⇀
τ

app.

epsilon

Example 3.1.4. The intuitive manner in which the types can be understood is: a term will have a type,
and a location will have a vector of types. If N has type ↼

σ ⇒
⇀
τ and S has the type ⇀

σ, then the machine
run (S , N) will produce stack (T , ?) with the type ⇀

τ . We can observe how, the types present the net
behaviour of the abstract machine and not the intermediate stack use.

A further property of the sequential types is the ability to type terms of the type λx . xx by assigning x
a type of the form ⇒ ⇀

τ . This property is novel, as it completely diverges from the λ→, yet fixed point
combinators are still not able to be typed.

Theorem 3.1.5. Terms of the type λx . xx satisfy: expansion, composition, subject substitution, and
subject reduction.

3.1.2 Poly Typed Functional Machine Calculus

Poly-types are a further parametrisation of the sequential type, analogous to the change from a single
stack to a multiple-stack abstract machine.

Definition 3.1.6. Poly-types ρ,σ, τ , υ are given by the language:

τ ::=
↼
σA ⇒

⇀
τA

⇀
τA ::= {⇀τ a|a ∈ A}
⇀
τ a ::= τ1...τn

Where:
A is a set of locations.

⇀
τ a is vector ⇀

τ parametrised on location A

The strong normalising properties of terms typed in the poly-type system are maintained, based on a
proof analogous to that of the sequential types.

Definition 3.1.7. Sequential types are a basic structure leading to the FMC type system and are of the
form:

ρ, σ, τ ::= σn...σ1 ⇒ τ1...τn

Where: ρ is a type, consisting of a vector σn ... σ1 of antecedents and a vector τ1 ... τn of precedents.
The concatenation of types can be interpreted with the use of standard implication and conjunction as:

ρ = σn ∧ ... ∧ σ1 → τ1 ∧ ... ∧ τn.

Definition 3.1.8. Poly-types are defined by parameterising the sequential types with the addition of a
location variable.
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Poly-types ρ,σ, τ , υ are given by the language:

τ ::=
↼
σA ⇒

⇀
τA

⇀
τA ::= {⇀τ a|a ∈ A}
⇀
τ a ::= τ1...τn

Where A is a set of locations, and ⇀
τ a is a vector ⇀

τ parametrised on location a.

Definition 3.1.9. Types can be intuitively understood as the net behaviour of the FMC machine, where
the antecedents represent the input that the machine requires, and the precedents represent the output
of the machine. The dissertation proposes a further expansion of the standard poly-type. The BNF of the
proposed FMC types is:

T ::= C |V | ε |TT |T⇒ T | l(T)

C are constants, a terminal type modelling the behaviour of constants in computation. Although useful,
constants can be omitted without any impact on the integrity of the type-system. V are variables that
can be cast to any other type T through the use of substitutions. It is important to note that substitutions
are consistent on equal variables. ε is the empty type, a representation similar to that of void. TT is a
concatenation of types, representative of the sequential property of the FMC . T ⇒ T is a function
type, similar to the one found in the λ→. Lastly l(T) is the location parametrised type, the natural way of
capturing the locations of the FMC .

Although the first four types (with the exception of ε - which is a special case in itself) seem to not be
parametrised on a location, in reality they are representative of types present on the home stack (referred
to as the γ location) of the FMC machine.

For notation conventions used refer to Figure 3.1.2.

Figure 3.1: Type notation conventions
For consistency the notation conventions used through the thesis, and taken forward to the parser
implementation:

1. Constant types C are written as words beginning with a capital letter, for example Int, or Bool .
2. Variable types V are written as words beginning with a lower case letters, for example a, or

bA1.
3. Location types lT are written location first followed by the bracketed type, for example in(a)

or a(b(A)).
4. Concatenated types TT are written surrounded by brackets with the types separated by a

comma or a space, for example (a, B, l(C )). The position of the types in the vector is read
from left to right, with left being the first type in the vector.

5. Function types T⇒ T are as T⇒T. For example a⇒ b, x ⇒ l(a⇒ b) or x ⇒ n(()⇒ l(a⇒ b)).
6. Empty type ε can be omitted from a function type, writing ε⇒ a as ⇒ a, or (parser specific) as

()⇒ a.

Definition 3.1.10. A well typed FMCt term N is typed by a context Γ = x : a⇒ b... where Γ ` N based
on the following typing rules:

Γ ` ? : ⇒
star

Γ ` M : d ⇒ e

Γ/x ∪ x : a⇒ b ` x ; M : a u b � d ⇒ b u b � d
variable

Γ ` M : a⇒ b Γ ` N : d ⇒ e

Γ ` [M]l . N : d ⇒ (e, l(a⇒ b))
application

Γ ` M : c ⇒ d

Γ/x ∪ x : a⇒ b ` l〈x〉. M : (l(a⇒ b), c)⇒ d
abstraction
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A saturated location is an empty location, or in other words a location which holds the type ε. The
function loc : T− > L returns a set of all the non empty locations of a type.

The fusion law is the equivalent of function composition in the FMC where f .x is equivalent to x ; f . The
fusion/composition of terms can only happen on the home location γ. Furthermore, any concatenation of
γ types gets fused into one (resulting) γ type with an input type and an output type.

Example 3.1.11. Given the terms M : (a⇒ b) and N : (b⇒ c) their sequencing into one term M ; N could
wrongly be represented by the concatenation of their types ((a⇒ b), (b ⇒ c)). This is an example of not
applying the rule of fusion/composition, and would represent delaying the evaluation of the two terms;
essentially chaining unevaluated (thunks). This is not how the FMC behaves, where a sequencing of
γ terms must fuse/compose into one resulting γ((T ⇒ T)) type - describing the net behaviour of the
machine. Note that γ is an arbitrary location, and can be replaced by any other location, but that the
FMC machine only evaluates terms parametrised at this location.

Definition 3.1.12. Given the term M. N, where M is of the type (a⇒ b) and N is of the type (c ⇒ d), for
a well typed term to be able to apply the law of fusion one of the following conditions must stand:

1. c is of the form (b, e), i.e. b ⊆ c . The output of the first term is fully consumed by the second term.
The remaining types from the second type get concatenated to the input of the first type, with its
output type now becoming the output type of the term.

2. b is of the form (c , e), i.e. c ⊆ b. The input of the second term is fully consumed by the output of
the first term. Case in which the remaining output of the first term is concatenated to the end of the
second output.

3. Both rule 1. and 2. are special conditions of a more general rule, specifically that of location
independence. In order for the fusion of two terms to take place, the necessary condition is
that if any location is unsaturated in either the left or right type at the end of the unification, it
must be saturated in the location of the other type. Thus if the output of term M is of the form
(a,λ(b), η(c),µ(d)) and the input of term N is of the form (m,λ(n), η(p)) then fusion can only take
place iff ((a ⊆ m) ∨ (a ⊇ m)) ∧ ((b ⊆ n) ∨ (b ⊇ n)) ∧ ((c ⊆ p) ∨ (c ⊇ p)) but µ(d) does not make a
difference in this instance, as location µ is already saturated in the opposing type - any omitted
location is saturated.

Theorem 3.1.13. Any well typed FMC term is defined by a function type T⇒T.

Proof. Any well type term M is of the form (a⇒ b) if upon its evaluation by the FMC machine with a type
a on its γ stack, it would terminate with an element of type b on its γ stack. Similar to arrows defined by
Hughes, John (2000), FMC terms are lifted functions, or morphisms from one type to another. Thus the
only way in which the the γ stack could be holding an element of type a is if the machine evaluated a
term of the type (⇒a). And following the rule of fusion the sequencing of the two would give rise to the
type (⇒b).

Any other term is not considered well typed as it cannot be evaluated by the FMC machine. By the typing
rules defined at 3.1.10, all the other terms are dependant on a well typed term, thus by induction, any
well typed term is of the form (a⇒ b).

Example 3.1.14. Nevertheless terms at other locations can still be nested inside the γ type, with the
modulus equivalence property standing true:

M : (⇒λ(a)); N : (⇒µ(b)) = M ; N : (⇒(λ(a), µ(b)) = N ; M : (⇒(λ(a), µ(b))

The sequencing of terms M,N did not result in a concatenation of the two γ types - i.e. (⇒((⇒λ(a)), (⇒µ(b))).
But rather in their fusion into a new γ type. The fusion of the output types of the two terms did result in a
new term which is based on the concatenation of the two output types. This is due to the fact that the
FMC machine delays the evaluation those terms.

Proposition 3.1.15. Juxtaposition u :: T→ T→ T defines the operation of concatenation between two
FMC types. The triple (T,u, ε) forms a monoid.
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3.2 Merging/Unification

While assessing the equality of most types is trivial, assessing the equality of types containing variables
requires more thought, as variables can expand by splitting into new variables, or contract by becoming
an empty type to create equivalent types.

Definition 3.2.1. The cardinality of a type is the number of concatenated terms it has at a give location,
or inside a location parametrised type. The value of a C,T,V,T⇒ T is one when counting at a location,
and the cardinality of (T) is equal to the inner cardinality of the wrapped type T.

Definition 3.2.2. The expansion and contraction of a type is the property of a type variable V to
expand and contract by substituting itself with ε.

Int
contract← a, Int, a

expand→ a1, a2, · · · , an, Int, a1, a2, · · · , an,

Note that substitutions apply in a consistent manner on equal variables.

To help in determining the equivalence of two types, the function merge :: (S× T× T)→ (S× T× T)
takes a substitution list together with two types and creates a list of substitutions needed to merge the
two types, while also keeping track of the remaining unmerged types at each step. The merging algorithm
acts both as a unification algorithm and equivalence test.

The functions � and � typed T → T → T are specialisation of merge which use an empty list of
substitutions and only return the remaining elements from the first element respectively the second
element. Both resulting types have all the substitutions applied.

Definition 3.2.3. The high level description of the merge algorithm is:

1. Apply the substitutions to both terms.

2. Recursively normalise the types - sorting on a per location, per type basis, respecting the modulo
equivalence property. Example:

t1 = ((⇒Int), a1, λ((a1⇒ Int)), b1, c1, d1) 7→((⇒Int), a1, b1, c1, d1, λ((a1⇒ Int)))

t2 = ((⇒Int), a2, b2, d2, λ(e2)) 7→((⇒Int), a2, b2, d2, λ(e2))

3. Check the cardinality of the two types, if the types do not contain variables, or are of minimum
cardinality difference V, proceed to point 4. with the current terms. Otherwise proceed to the
general type pattern finding algorithm as follows: (also diagrammatically portrayed in Figure 3.4)

(a) Create all the variable substitution variations for the expansion or contraction of terms, with
cardinality between the smallest cardinality and the highest cardinality;

(b) Filter out all the variations except the ones resulting in the smallest total cardinality difference
between the two new terms.

(c) Run the merging algorithm from step 4 on all of the resulting terms. Return the best result,
which is defined in decreasing order as: the result with both types fully merged, the result
with one fully merged type and smallest total cardinality, the result with the smallest combined
cardinality.

4. Start the merging process on a per type, per location basis, from left to right - keeping track of what
remains unmerged in both left and right types, and the substitutions gathered up to that point;

5. The two types are of the same kind and are equal, at the same position and location. If a different,
non-variable term is found then the two terms are not equivalent (see Figure 3.3). Note that function
types are equal iff both their input and output types are equal.

(a⇒ b) = (d ⇒ c)⇔ a = d , b = c

A = A

A 6= B

a = A⇒ S(a→ A)

p(a) = k(b)⇔ a = b, la = ka
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6. One or both types are variables - in which case the algorithm casts the variable to the the other
type by creating a substitution. Then the rest of the type is continued to be merged after applying
the new substitution list to the terms (see Figure 3.2).

7. if a full merge cannot be found, the algorithm returns the remaining types to be merged together
with the substitutions at that point.

Proposition 3.2.4. The merging algorithm is guaranteed to find a solution if one exists, or the first
smallest difference between the types.

Proof. The algorithm creates all the possible expansion, contractions of the two terms, and attempts
merging each of them. If the two terms are equivalent, their equivalent form lies in one of the possible
expansion, contractions, or casting of the intermediary types. The solution is not space efficient, with a
complexity estimated at (kd )

l where k is the cardinal of unique variables in both terms, d is the maximum
cardinal difference between terms at any location and l is the number of locations in the types.

proposition

Figure 3.2: Example of merging process on two equivalent terms

t1 = ((⇒Int), a1,λ((a1⇒ Int)))

t2 = ((⇒Int), a2,λ(e2, f 2))

s = {}
7→

∣∣∣∣∣∣∣
t1 = (a1,λ((a1⇒ Int)))

t2 = (a2,λ(e2, f 2))

s = {}
7→

∥∥∥∥∥∥∥∥∥∥∥∥

t1 = ε

t2 = ε

sfinal =


a1→ a2

e2→ (a2⇒ Int)

f 2→ ε




(∗)

From (∗) we can deduce that the types t1, t2 are equivalent, given the sequential application of the
substitutions at sfinal . In their merged form the two terms are:

t1 ≡ t2 ≡ (⇒Int), a2, λ((a2⇒ Int))

Figure 3.3: Example of merging process on two non equivalent terms

t1 = ((⇒a2), Bool ,λ((a1⇒ Int)))

t2 = ((⇒a1), Int,λ(e2, f 2))

s = {}
7→

∣∣∣∣∣∣∣
t1final = (Bool ,λ((a2⇒ Int)))

t2final = (Int,λ(e2, f 2))

sfinal = {a1→ a2}
(∗∗)

From (∗∗) we can deduce that the types t1, t2 are not equivalent. We also know that by applying the
substitution sfinal we could partially merge the two types to obtain: t1final , t2final . Although not relevant
in this example, keeping track of the partial results is important for the algorithm as a hole.

3.3 Fusion

The fusion :: (S×Tt×Tt)→ (S×Tt) algorithm is used to determine the type of sequencing FMC terms.
The function captures the behaviour of well typed FMCt terms behave. The intuitive principle behind it
is that the FMC machine can consume fully, or partially types which are on the location parametrised
stacks, while maintaining certain laws.

Definition 3.3.1. The function’s high level description is:
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Figure 3.4: Example of expansion and contraction generating minimum cardinal difference types,
and the empty type.

t1 = (a, b, a, (⇒Int)︸ ︷︷ ︸
card .4

,λ( ⇒b︸︷︷︸
card .1

))

t2 = ( c , d︸︷︷︸
card .2

)
→



minimum cardinality difference

∆min.
card (t1, t2) = 1

{a→ ε} →


t1 = (b, (⇒Int)︸ ︷︷ ︸

card .2

,λ( ⇒b︸︷︷︸
card .1

)

t2 = ( c , d︸︷︷︸
card .2

)

{b → ε, d → (d1, d2)} →


t1 = (a, a, (⇒Int)︸ ︷︷ ︸

card .3

,λ( ⇒b︸︷︷︸
card .1

)

t2 = ((c , d1, d2)︸ ︷︷ ︸
card .3

)

{b → ε, c → (c1, c2)} →


t1 = (a, a, (⇒Int)︸ ︷︷ ︸

card .3

,λ( ⇒b︸︷︷︸
card .1

)

t2 = ((c1, c2, d)︸ ︷︷ ︸
card .3

)

{c → ε, d → (d1, d2, d3, d4)} →


t1 = (a, b, a, (⇒Int)︸ ︷︷ ︸

card .4

,λ( ⇒b︸︷︷︸
card .1

)

t2 = ((d1, d2, d3, d4)︸ ︷︷ ︸
card .4

)

{d → (d1, d2, d3)} →


t1 = (a, b, a, (⇒Int)︸ ︷︷ ︸

card .4

,λ( ⇒b︸︷︷︸
card .1

)

t2 = ((c , d1, d2, d3)︸ ︷︷ ︸
card .4

)

{c → (c1, c2), d → (d1, d2)} →


t1 = (a, b, a, (⇒Int)︸ ︷︷ ︸

card .4

,λ( ⇒b︸︷︷︸
card .1

)

t2 = ((c1, c2, d1, d2)︸ ︷︷ ︸
card .4

)

{c → (c1, c2, c3)} →


t1 = (a, b, a, (⇒Int)︸ ︷︷ ︸

card .4

,λ((⇒b)︸ ︷︷ ︸
card .1

))

t2 = ((c1, c2, c3, d)︸ ︷︷ ︸
card .4

)

{d → ε, c → (c1, c2, c3, c4)} →


t1 = (a, b, a, (⇒Int)︸ ︷︷ ︸

card .4

,λ((⇒b)︸ ︷︷ ︸
card .1

))

t2 = ((c1, c2, c3, d)︸ ︷︷ ︸
card .4

)
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1. The function receives two FMCt types, and a list of initial substitutions. The substitutions are applied to
the two types, and the new version of the types is taken forward. Example:

type1 = (x ⇒ y)

type2 = (a⇒ x)

subs = {x → Int}

type1′ = (Int ⇒ y)

type2′ = (a⇒ Int)

2. The merge algorithm is applied to the output type of the left type and the input type of the right type,
using an empty list of substitutions. Example:

t ′1 = Int ⇒ y

t ′2 = Int⇒b

merge({}, y , Int) = ({y → Int}, ε, ε) = result

3. Depending on the result of the merge the two types can or cannot be fused:

(a) Iff the first element is fully consumed then the remaining of the second element is concatenated to the
end of the first element input, and the output of the first element is replaced with the output of the second
element.

t1 = a⇒ b

t2 = c ⇒ z

merge({...}, b, c) = ({...}, ε, v)

fusion({...}, t1, t2) = ({...}, a⇒ z)

(b) Iff the second element is fully consumed then the output type becomes the remaining of the first element
concatenated to the end of the second element’s output type, with the input type remaining the same.

t1 = a⇒ b

t2 = c ⇒ z

merge({...}, b, c) = ({...}, v , ε, )

fusion({...}, t1, t2) = ({...}, a⇒ z u v)

(c) Iff both elements are partially consumed and the remaining elements are all on different locations (do not
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interfere with one another) then both are added as previously described.

t1 = a⇒ b

t2 = c ⇒ z

merge({...}, b, c) = ({...}, v , m, )

with: loc(v) ∩ locm = ∅

fusion({...}, t1, t2) = ({...}, a u m ⇒ z u v)

(d) Otherwise, the two terms cannot be merged, which should return an error indicating what types are left
after the merging attempt. This also means that the term which was meant to fusion, is badly typed.

Intuitively, the merging and fusion algorithms, mimic the manner in which the FMC machine operates.
Terms of a specific type are "consumed" by the FMC machine to produce new terms. Analogous to
the manner in which terms on different locations can permute freely - partially consumed terms with
non-shared locations can compose. This behaviour of the FMC machine is similar to partial application
in the λ calculus.

Proposition 3.3.2. Typed terms are not proof of machine termination.

Proof. Given the term [x ]. 〈x : _〉. x , the FMCt machine would enter an infinite loop. But as can be seen
from the type of the term x the type is correct. Furthermore it can easily be inferred. Terms of the type
ε⇒ ε are not proof of termination. Another example term is shown in the following derivations:

Γ ` ? : ε⇒ ε

Γ ` x ; ? : ε⇒ ε

Γ ` ? : ε⇒ ε

Γ ` x ; ? : ε⇒ ε

Γ ` 〈x : e1⇒ f 1〉 ; x ; ? : λ(ε⇒ ε)⇒ ε

Γ ` [x ; ? ] ; 〈x : e1⇒ f 1〉 ; x ; ? : ε⇒ ε

Γ ` ? : ε⇒ ε

Γ ` 1 ; ? : ε⇒ Int

Γ ` ? : ε⇒ ε

Γ ` 〈y : ε⇒ Int〉 ; ? : λ(ε⇒ Int)⇒ ε

Γ ` [1 ; ? ] ; 〈y : ε⇒ Int〉 ; ? : ε⇒ ε

Γ ` ? : ε⇒ ε

Γ ` 〈x : e1⇒ f 1〉 ; ? : λ(ε⇒ ε)⇒ ε

Γ ` [[1 ; ? ] ; 〈y : ε⇒ Int〉 ; ? ] ; 〈x : e1⇒ f 1〉 ; ? : ε⇒ ε

Proposition 3.3.3. Any typed term except for ⇒ is proof of machine termination.

Alternative Typing Rules

During the research phase, a system based on alternative typing rule was considered, portrayed in
Figure 2.2. The system works by breaking down FMCt terms into smaller terms and fusing them one
by one starting from the first term on the left. In comparison, the current typing laws derive a type from
the last sequential term (always a ?), building the derivation backwards. The differences are similar to
traversing and folding the term from the left or from the right, with the alternative typing strategy traversing
from the left.

3.4 FMCtSyntax

To ergonomically work with the proposed type system and to allow expressing types in the FMC ’s syntax,
the term of the bind/pop term is altered. This constitutes the basis of the FMCt .
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Definition 3.4.1. The BNF of the FMCt is:

N ::= ? (star)

| x ; N (variable)

| l〈x : Tt〉 ; N (pop)

| [M]l ; N (push)

The FMC and the FMCt are identical, with the FMCt introducing some additional concepts, namely
native constants, and type constraining. The syntax of the location parameters contains the same list of
reserved locations. The location variable L can take any string value with the exception of the reserved
locations L = {x |x ∈ string , x /∈ {in, out, rnd , nd}}. The syntax of the location variable l is described by
the BNF:

l ::= in | out | rnd | nd | L

Proposition 3.4.2. Binding can be inferred in the FMCt without any additional information if the term is
well typed.

Proof. As seen in the typing laws 3.1.10 the bind operator pops a term from a specific location and binds
it. Given that the type at the specific location is either known or empty in any well typed term, means that
no further information to the bind is needed to infer the type. All that is needed is to type the variable with
a pair of fresh type variables in a function type, i.e. 〈x :_〉 ⇔ 〈x :a1 ⇒ a2〉 where a1, a2 are fresh. If the
popped location is empty then the type of x remains general, until a term tries to unify the variables. If
the popped location is occupied, then the variables a1, a2 get unified in the context, taking forward the
new type. As seen in the following examples.

Γ ` ? : ε⇒ ε

Γ ` 〈x : a1⇒ b1〉 ; ? : λ(a1⇒ ε)⇒ ε

Γ ` ? : ε⇒ ε

Γ ` x ; ? : ε⇒ ε

Γ ` 〈x : a1⇒ b1〉 ; x ; ? : λ(ε⇒ ε)⇒ ε

Γ ` ? : ε⇒ ε

Γ ` 1 ; ? : ε⇒ Int

Γ ` ? : ε⇒ ε

Γ ` 〈x : ε⇒ Int〉 ; ? : λ(ε⇒ Int)⇒ ε

Γ ` [1 ; ? ] ; 〈x : ε⇒ Int〉 ; ? : ε⇒ ε

Γ ` ? : ε⇒ ε

Γ ` 1 ; ? : ε⇒ Int

Γ ` ? : ε⇒ ε

Γ ` x ; ? : ε⇒ Int

Γ ` 〈x : ε⇒ Int〉 ; x ; ? : λ(ε⇒ Int)⇒ Int

Γ ` [1 ; ? ] ; 〈x : ε⇒ Int〉 ; x ; ? : ε⇒ Int

Note, the current inference algorithm infers the type of

Theorem 3.4.3. It is sufficient to type all variables to establish the type of a well-typed term.

Proof. Proof is analogous to 3.4.2.

Primitives

In the syntax of the FMC primitives had to be encoded, and the only constant primitive available was
?:(⇒) and other terms built upon it. For example the pushing of ? to a location:

[?]. 〈x〉. ?⇒ x : (⇒)

[[?]l . ?]. 〈x〉. ?⇒ x : (⇒l((⇒)))
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Γ ` ? : ε⇒ ε Γ ` ? : ε⇒ ε

Γ ` [ ? ] ; ? : ε⇒ λ(ε⇒ ε)

Γ ` ? : ε⇒ ε

Γ ` 〈x : e1⇒ f 1〉 ; ? : λ(ε⇒ ε)⇒ ε

Γ ` [[ ? ] ; ? ] ; 〈x : e1⇒ f 1〉 ; ? : ε⇒ ε

Γ ` ? : ε⇒ ε Γ ` ? : ε⇒ ε

Γ ` [ ? ] ; ? : ε⇒ λ(ε⇒ ε)

Γ ` ? : ε⇒ ε

Γ ` 〈x : q1⇒ r1〉 ; ? : λ(ε⇒ ε)⇒ ε

Γ ` [[ ? ] ; ? ] ; 〈x : q1⇒ r1〉 ; ? : ε⇒ ε Γ ` ? : ε⇒ ε

Γ ` [[[ ? ] ; ? ] ; 〈x : q1⇒ r1〉 ; ? ] ; ? : ε⇒ λ(ε⇒ ε)

with ε representing the constant. To make working with constants easier, the FMCt introduces some
primitives, of the type (⇒C). These are pre-bound to their terms and present in any FMCt typing context.

Definition 3.4.4. FMCt primitives:

0, 1, 2... : (⇒Int)

True, False : (⇒Bool)

+,− : ((int, int)⇒ λ(⇒int))

if : ((bool , if (a), if (a))⇒ λ(a))

= : ((eq(a), eq(a))⇒ λ(bool))

Γ ` ? : ε⇒ ε

Γ ` 1 ; ? : ε⇒ Int

Γ ` ? : ε⇒ ε

Γ ` 2 ; ? : ε⇒ Int

Γ ` ? : ε⇒ ε

Γ ` if ; ? : (Bool , (if (ε⇒ Int), if (ε⇒ Int)))⇒ λ(ε⇒ Int)

Γ ` [2 ; ? ]if ; if ; ? : (Bool , if (ε⇒ Int))⇒ λ(ε⇒ Int)

Γ ` [1 ; ? ]if ; [2 ; ? ]if ; if ; ? : ε⇒ (λ(ε⇒ Int), Bool)

Γ ` ? : ε⇒ ε

Γ ` 1 ; ? : ε⇒ Int

Γ ` ? : ε⇒ ε

Γ ` 2 ; ? : ε⇒ Int

Γ ` ? : ε⇒ ε

Γ ` if ; ? : (Bool , (if (ε⇒ Int), if (ε⇒ Int)))⇒ λ(ε⇒ Int)

Γ ` [2 ; ? ]if ; if ; ? : (Bool , if (ε⇒ Int))⇒ λ(ε⇒ Int)

Γ ` [1 ; ? ]if ; [2 ; ? ]if ; if ; ? : ε⇒ (λ(ε⇒ Int), Bool)

Γ ` True ; [1 ; ? ]if ; [2 ; ? ]if ; if ; ? : ε⇒ (λ(ε⇒ Int), (Bool , Bool))

Γ ` ? : ε⇒ ε

Γ ` 〈x : a1⇒ b1〉 ; ? : λ(a1⇒ ε)⇒ ε

Γ ` ? : ε⇒ ε

Γ ` if ; ? : (Bool , (if (λ(a1⇒ ε)⇒ ε), if (λ(a1⇒ ε)⇒ ε)))⇒ λ(λ(a1⇒ ε)⇒ ε)

Γ ` [〈x : a1⇒ b1〉 ; ? ]if ; if ; ? : (Bool , if (λ(a1⇒ ε)⇒ ε))⇒ λ(λ(a1⇒ ε)⇒ ε)

if The type of if is worth discussing, as it showcases many features of the FMCt , and a few design
considerations. The type of the term shows the net behaviour of the term itself. Described, if will take an
evaluated bool and two unevaluated (necessarily of the same type) terms from the if location. Then, it
places the an element of type a in location λ. It is important that the element of type a is in location λ
because if the type was ((bool , if (a), if (a))⇒ a) a could not be recaptured or bound, and it would also
be executed upon its creation - potentially leading to unwanted results. Some examples, for an intuition
on how if works, together with their type:

Example 3.4.5.

[1. ?]if . [2. ?]if . True. if . ? : (⇒λ((⇒int)))

[1. ?]if . [2. ?]if . if . ? : (Bool ⇒ λ((⇒int)))

[1. ?]. if . ? : ((bool , if (a), if (a))⇒ (λ(⇒a), λ(⇒Int)))

As can also be seen, if also offers a good example of polymorphism and casting.
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scoop Example 3.4.5 gives rise to a new intricacy of the FMCt . There is no direct access to the
evaluated output, i.e. terms on the γ location. If we have a term M of the type (⇒Int) there is no way to
"pick up" the result from the term M ; M : (⇒Int, Int). One way would be to push it from the start to a
location [M ; M ; ?] : (⇒λ((⇒Int, Int))) but in some instances this is not a feasible way of programming.
The proposal is a new location ! (called "scoop") 〈x :_〉! : (⇒) that binds to a term the entire pre-entered
state of the machine, while leaving the state of the FMCt machine unchanged, (with the exception of the
new bind).

Example 3.4.6.
M; 〈x : _〉!⇔ [M]; 〈x : _〉

M; M; 〈x : _〉!⇔ [M; M]; 〈x : _〉
N; 〈x : _〉!; M; M; 〈y : _〉!⇔ [[N]; 〈x : _〉; M; M]; 〈y : _〉

3.5 Dealing with effects

reading To discuss the type system’s behaviour with regards to reading from a location, some further
examples are useful:

Example 3.5.1.
in〈x : (⇒Int)〉 ; ?

rnd〈x : (⇒Bool)〉 ; ?

nd〈x : _〉 ; ?

The first terms are well behaved, as it is clear what the FMCt machine is expecting from the in, rnd
locations, but the third type is less clear. Thus a first constraint, should be not allowing the infer action
to take place from the in, rnd , nd locations. The solution is to accept that these locations have special
conditions, with regards to pushing and popping, that should be captured and enforced by the type
system - and reflected in the behaviour of the evaluator.

writing Writing to the output imposes a different type of issue, that of unevaluated thunks:

Example 3.5.2.
[1] ; 〈x : _〉 ; [x ]out : (⇒out((⇒Int)))

As we can see from the type of the term, out does not hold the C Int but rather an unevaluated term that
would resolve to an Int. Although consistent with the behaviour of the FMCt this is most probably not
the way in which a user would expect the out location to work. Thus the typechecker can impose some
extra conditions to the location out and pushing to the location could behave slightly differently. Thus
the typechecer should ensure only terms of the type (⇒a) can be pushed to the out location. This could
allow a second evaluator to run the term and display the output.

streams Streams in the FMCt are typed (⇒T) and are the equivalent of constants, i.e. constant
functions. As the type system stands at the moment, no further addition is needed.

3.6 Dependently Typed FMCt

As seen in subsection 2.2.5 a first step towards dependently typing the FMCt is to create a term for the
type constructor.

N ::= ? (star)

| x ; N (variable)

| l〈x : Tt〉 ; N (pop)

| [M]l ; N (push)

| {x : Tt} ; N (let)
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Figure 3.5: Alternative typing rules, separating the fusion rule.

Γ ` ? : (⇒)
star

Γ/x ∪ x : (a⇒ b) ` x : (a⇒ b)
variable

Γ ` M : a⇒ b

Γ ` [M]l : (⇒l(a⇒ b))
application

Γ/x ∪ x : (a⇒ b) ` x : (a⇒ b)

Γ ` l〈x〉 : (l(a⇒ b)⇒)
abstraction

Γ ` M : (a⇒ b) Γ ` N : (c ⇒ d)

Γ ` in M ; N : (a u (b � c)⇒ d u (b � c)) iff loc((b � c)) ∩ loc((b � c)) = ∅
fusion
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Implementation

4.1 Overview

The research was undertaken through both theoretical and practical means, and most of the progress
was captured through an empirical testing of the proposed algorithms in a fresh Haskell implementation
of the Evaluator, Parser, Type-Checker and auxiliary modules i.e. WEB-FMCt and Latex-converter.
The intuition behind the FMC and FMCt is closely tied to experimental analysis and testing. The
experimental process, together with tagged iterations are documented on the project’s public GitHub
page, and are open to consultation. To maintain consistency across the project, all the development has
been implemented in Haskell. For reproducibility the builds have been written using NIX and further
containerised. Although the dissertation focuses on the theoretical nature of the Type Checker, much
consideration has been given to the way in which the software solution was developed to allow for ease
development and expansion. For an overview of the set-up see Figure 4.1.

4.2 Haskell Implementation

Haddock Documentation

A legible, and documented coding style was adopted, that can be automatically parsed by Haddock,
the documentation generator for Haskell code. The documented, code should enable easy refactoring,
maintenance, and improved code comprehension. Haddock documentation can be consulted inside a
browser, and offers quick searching features, that allows for fast navigation. In the event of a push of the
library to Stackage (the central repository for Haskell libraries), the documentation of the code for any
successful library. For a view of the documentation website, refer to Figure 4.2.

Parser Module

Essential to the process was the development of an easily editable and maintainable parser. As can
be seen in the Listing 5.2 the use of the Parsec library and parser combinators, allowed for a legible
implementation, that can be further customised and extended as the FMCt language develops and
matures.

Web-Interface

A basic web interface FMCt-WEB was set up to allow for easy interaction with the FMCt and its type-
checker without the need of locally building or installing. The interface makes use of the Haskell Scotty
library to serve static web pages that are pre-computed on the server-side. The web-pages are built
using custom components, set up with the combinator library called Lucid. The deployment of the site
is done on a free instance of Heroku which runs a Docker containerised version of the FMCt-WEB
executable. The testing, build, and deployment of the Docker container is done automatically by a CI/CD
pipeline set up in GitHub Actions, which makes sure that the on-line version is up to-date, and working,
without any need for maintenance.

35
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Figure 4.1: Architecture of type-checker and implementation.

Figure 4.2: Example of Haddock documentation, generated from source code.
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The design of the web-interface, although not-aesthetical pleasing, is modular enough to allow for further
development. The infrastructure, is robust enough to allow for easy re-deployment (changing provider),
or scaling. Finally the web interface is also sufficiently useful to provide a proof-of-concept, and easy
interaction with the subject of the dissertation.

Latex Derivation Converter

To allow for the easy type-up of type-checker derivations, a Latex module was developed that translates
successful FMCt typing derivations to latex code. The derivations used in the dissertation, are end
products of the module.

Type Checker

The typechecker module allows for the easy building of type derivations based on the laws previously
defined. As all the partial functions in the Haskell implementation, the functions make use of an Either
data-type.

The current inference mechanism relies on a first-collision-first-substitution basis, where each type is
cast as the fusion algorithm acts upon it - limiting the amount of types it can infer.



Chapter 5

Critical Analysis

5.1 Theoretical

The thesis’ initial scope has been achieved, and can be summarised to the following objectives. The
primary scope was to research the feasibility of the proposed type system, and assess if typing each
variable is sufficient to derive types.

A secondary scope was to research the feasibility of type inference, and an ergonomic way of integrating
types into the FMC ’s syntax - responded through the FMCt . The proposed fusion/merging algorithms
provide decidable and tractable ways of inferring types without annotations, through the use of fresh type
variables. Lastly the research touches on notion of type streams and constant functions.

In addition to the original scope, the research proposed a novel way of integrating constants (the like of
Int and Bool) into the calculus, while maintaining the properties of the original FMC .

Further directions into the study of the FMC would be to continue and propose an equivalent of type-
schemes for the language, together with a generalisation algorithm. Further study can expand and
extend into methods of integrating types, and type constructors into the language itself, together with the
entailing analysis of the language’s properties.

5.2 Practical

From a practical software point of view, the dissertation achieved the delivery of a new modular Haskell
implementation of the FMC, expanded with the proposed type-system.

The parser, evaluator, type-checker, web-interface are all written under under an open-source license
and are available at the link https://github.com/cstml/FMCt. The web-interface is hosted at https://fmct-
web.herokuapp.com/ and there is a functional CI/CD pipeline that integrates, builds, and deploys changes
pushed to the repository. The design of the system is thought for ease of refactoring, with the build
integrating contemporary methods for deployment.

In terms of further work, the current implementation does not make use of the general type pattern
finding algorithm from Definition 3.2.3 which would be essential for the inference of any type.

Further limitations are the lack of a type-scheme like behaviour of polymorphism. As type variables
are consistent and substituted consistently across terms, once a binder type is established it cannot be
polymorphically changed. Thus, if the inference mechanism sets the type variable if 1 of term if to be Int,
then the current implementation will not allow if to accept any other type subsequently.

Γ ` ? : ε⇒ ε

Γ ` 2 ; ? : ε⇒ Int

Γ ` ? : ε⇒ ε

Γ ` 〈x : i1⇒ j1〉λ ; ? : λ(ε⇒ ε)⇒ ε

Γ ` λ[2 ; ? ] ; 〈x : i1⇒ j1〉λ ; ? : ε⇒ ε

Γ ` 1 ;λ[2 ; ? ] ; 〈x : i1⇒ j1〉λ ; ? : ε⇒ Int
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Appendix

Parser Module Source Code

1 module FMCt.Parsing (
2 parseFMC,
3 parseType,
4 parseFMCtoString,
5 parseFMC’,
6 PError (..),
7 ) where
8

9 import Control.Exception (Exception)
10 import qualified Control.Exception as E
11 import Control.Monad (void)
12 import FMCt.Syntax (Lo (..), T, Tm (..), Type (..))
13 import Text.ParserCombinators.Parsec
14

15 data PError
16 = PTermErr String
17 | PTypeErr String
18 deriving (Show)
19

20 instance Exception PError
21

22 -- | Main Parsing Function. (Unsafe)
23 parseFMC :: String -> Tm
24 parseFMC x = either (E.throw . PTermErr . show) id $ parse term "FMC Parser" x
25

26 -- | Main Parsing Function. (Safe)
27 parseFMC’ :: String -> Either ParseError Tm
28 parseFMC’ x = parse term "FMCParser" x
29

30 -- | Utility Parsing Function used for the FMCt-Web.
31 parseFMCtoString :: String -> String
32 parseFMCtoString x = either show show $ parse term "FMCParser" x
33

34 -- | Type Parser.
35 parseType :: String -> T
36 parseType x = either (E.throw . PTypeErr . show) id $ parse termType "TypeParser" x
37

38 -- | Term Parser.
39 term :: Parser Tm
40 term = choice $ try <$> [ application, abstraction, variable, star]
41

42 -- | Abstraction Parser.
43 -- Example: lo<x:a>
44 abstraction :: Parser Tm
45 abstraction = do
46 l <- location
47 v <- char ’<’ >> spaces >> many1 alpha <> many alphaNumeric
48 t <- spaces >> char ’:’ >> spaces >> absTy <* spaces <* char ’>’
49 t2 <- (spaces >> sepparator >> spaces >> term) <|> omittedStar
50 return $ B v t l t2
51 where
52 absTy = try higherType <|> try uniqueType
53

54 application :: Parser Tm
55 application = do
56 t <- between (char ’[’) (char ’]’) (term <|> omittedStar)

41
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57 l <- location
58 t2 <- (spaces >> sepparator >> spaces >> term) <|> omittedStar
59 return $ P t l t2
60

61 variable :: Parser Tm
62 variable = do
63 x <- spaces >> (many1 alphaNumeric <|> many1 operators)
64 t2 <- (spaces >> sepparator >> spaces >> term) <|> omittedStar
65 return $ V x t2
66

67 star :: Parser Tm
68 star = (eof >> return St)
69 <|> (void (char ’*’) >> return St)
70

71 omittedStar :: Parser Tm
72 omittedStar = (string "") >> return St
73

74 location :: Parser Lo
75 location = choice $
76 try <$> [ string "out" >> return Out
77 , string "in" >> return In
78 , string "rnd" >> return Rnd
79 , string "nd" >> return Nd
80 , string " " >> return La
81 , string "^" >> return La
82 , string "_" >> return Ho
83 , string " " >> return Ho
84 , Lo <$> many1 alphaNumeric
85 , string "" >> return La
86 ]
87

88 -- | Type
89 -- Strings beginning with a small letter
90 -- Example:
91 -- >> a
92 -- >> b
93 variableType :: Parser T
94 variableType = do
95 x <- many1 smallCapsAlpha <> many alphaNumeric
96 return $ TVar x
97

98 -- | Unique Variable type
99 -- Just an underscore "_"

100 -- Example: _
101 uniqueType :: Parser T
102 uniqueType = do
103 _ <- between spaces spaces $ char ’_’
104 return $ TVar "inferA" :=> TVar "inferB" -- this gets changed to a unique variable at

typecheck time
105 -- TODO: preparser that changes these to fresh vars
106

107 -- | Constant Type
108 -- Strings beginning with a capital letter
109 -- Example: Int, A, B
110 constantType :: Parser T
111 constantType = do
112 x <- many1 capsAlpha <> many alphaNumeric
113 return $ TCon x
114

115 -- | Location Types are Types at a specific location
116 --
117 -- Examples
118 -- >> In(Int)
119 -- >> In(Int=>Int)
120 locationType :: Parser T
121 locationType = do
122 l <- location
123 t <- between (spaces >> char ’(’) (spaces >> char ’)’) termType
124 return $ TLoc l t
125

126 -- | Vector Types are a list of types.
127 --
128 -- Examples
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129 -- >> a,b,c
130 -- >> a b c
131 vectorType :: Parser T
132 vectorType = do
133 t <- between
134 (spaces >> (char ’(’))
135 (spaces >> (char ’)’))
136 (termType ‘sepBy1‘ (((char ’ ’) <* spaces) <|> (spaces *> char ’,’ <* spaces)))
137 return $ TVec t
138

139 -- | Empty type is empty
140 --
141 -- Examples: e => e, ()=>e
142 emptyType :: Parser T
143 emptyType = do
144 _ <- (spaces >> string "e") <|> string "()"
145 return $ TEmp
146

147 higherType :: Parser T
148 higherType = do
149 --between (char ’(’) (char ’)’) $ do
150 t1 <- termType’
151 _ <- spaces >> string "=>" >> spaces
152 t2 <- termType’
153 return $ t1 :=> t2
154

155 -- | All Types
156 termType :: Parser T
157 termType = try higherType
158 <|> try emptyType
159 <|> try vectorType
160 <|> try locationType
161 <|> try constantType
162 <|> try variableType
163 <|> try uniqueType
164

165 -- | Selected types
166 termType’ :: Parser T
167 termType’ = try vectorType
168 <|> try emptyType
169 <|> try locationType
170 <|> try constantType
171 <|> try variableType
172

173

174

175 --------------------------------------------------------------------------------
176 -- Aux
177 sepparator :: Parser ()
178 sepparator = eof <|> void (between spaces spaces (oneOf ".;"))
179

180 alpha :: Parser Char
181 alpha = oneOf $ [’a’ .. ’z’] ++ [’A’ .. ’Z’]
182

183 capsAlpha :: Parser Char
184 capsAlpha = oneOf $ [’A’ .. ’Z’]
185

186 smallCapsAlpha :: Parser Char
187 smallCapsAlpha = oneOf $ [’a’ .. ’z’]
188

189 numeric :: Parser Char
190 numeric = oneOf [’0’ .. ’9’]
191

192 alphaNumeric :: Parser Char
193 alphaNumeric = alpha <|> numeric
194

195 operators :: Parser Char
196 operators = oneOf "+-/%=!?"

Listing 5.1: Parser module for the FMCt

Typechecker Module Source Code
1 {-# OPTIONS_GHC -Wno-unused-imports #-}
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2 {-# OPTIONS_GHC -Wno-unused-top-binds #-}
3 {-# OPTIONS_GHC -Wno-unused-matches #-}
4 {-# LANGUAGE TupleSections #-}
5

6 module FMCt.TypeChecker2
7 (
8 Derivation(..),
9 Judgement,

10 Context,
11 derive0,
12 derive1,
13 testD0,
14 testD1,
15 testD2,
16 derive2,
17 getTermType,
18 pShow’,
19 ) where
20 import FMCt.Syntax
21 import FMCt.Parsing
22 import FMCt.TypeChecker (
23 freshVarTypes,
24 splitStream,
25 TError(..),
26 normaliseT,
27 buildContext,
28 Operations(..),
29 )
30 import Control.Monad
31 import FMCt.Aux.Pretty (pShow,Pretty)
32 import Data.Set
33 import Control.Exception
34 import Data.List (nub)
35

36 type Context = [(Vv, T)]
37

38 type Judgement = (Context, Term, T)
39

40 type Term = Tm
41

42 type TSubs = (T,T)
43

44 data Derivation
45 = Star !Judgement
46 | Variable !Judgement !Derivation
47 | Abstraction !Judgement !Derivation
48 | Application !Judgement !Derivation !Derivation
49 deriving (Show, Eq)
50

51 emptyCx :: Context
52 emptyCx = [("*",mempty :=> mempty)]
53

54 normalForm :: T -> T
55 normalForm = \x -> case x of
56 TEmp -> TEmp
57 TVar _ -> x
58 TCon _ -> x
59 TVec [] -> TEmp
60 TVec (m:n:p) -> case m of
61 TLoc l t -> case n of
62 TLoc k t’ -> if l < k then TLoc l (normalForm t) <> normalForm (TVec (n:p))
63 else TLoc k (normalForm t’) <> normalForm (TVec (m:p))
64 _ -> (normalForm n) <> normalForm (TVec (m:p))
65 _ -> (normalForm m) <> normalForm (TVec (n:p))
66 TVec [x’] -> normalForm x’
67 TLoc l t -> TLoc l (normalForm t)
68 m :=> n -> normalForm m :=> normalForm n
69

70

71 derive0 :: Term -> Derivation
72 derive0 term = derive0’ freshVarTypes term
73 where
74
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75 pBCx = either (const emptyCx) id $ buildContext emptyCx term
76

77 exCx = []
78 derive0’ :: [T] -> Term -> Derivation
79 derive0’ stream = \case
80

81 St -> Star (pBCx, St, ty)
82 where ty = TEmp :=> TEmp
83

84 x@(V bi t’) -> Variable (pBCx’, x, ty’) nDeriv
85 where
86 ty = normaliseT $ head stream
87 ty’ = either (const ty) id $ getType x pBCx
88 pBCx’ :: [(Vv,T)]
89 pBCx’ = toList $ fromList pBCx ‘union‘ singleton (bi,ty’)
90 nDeriv = derive0’ (tail stream) t’
91

92 x@(B bi bTy lo t’) -> Abstraction (nCx, x, ty) nDeriv
93 where
94 ty = TLoc lo bTy :=> mempty
95 nCx = [(bi,bTy)]
96 nDeriv = derive0’ (tail stream) t’
97

98 xx@(P ptm lo t’) -> Application (exCx, xx, ty) deriv nDeriv
99 where

100 ty = mempty :=> TLoc lo abvT
101 deriv = derive0’ (tail stream) ptm
102 abvT = getDerivationT deriv
103 nDeriv = derive0’ (tail stream) t’
104

105 derive1 :: Term -> Derivation
106 derive1 term = snd $ derive1’ freshVarTypes pBCx emptySb term
107 where
108 emptySb = []
109 pBCx1 = either (const emptyCx) id $ buildContext emptyCx term -- add constants
110 pBCx2 = parseBinders term
111 pBCx = chkUnique $ pBCx1 ++ pBCx2
112 chkUnique :: Context -> Context
113 chkUnique x = if length x == length (nub $ fmap fst x) then x else error "Variable double

bind."
114

115 parseBinders = \case
116 St -> []
117 B bi t _ t’ -> (bi,t) : parseBinders t’
118 P t _ t’ -> parseBinders t ++ parseBinders t’
119 V _ t’ -> parseBinders t’
120

121 derive1’ :: [T] -> Context -> [TSubs] -> Term -> ([TSubs],Derivation)
122 derive1’ stream exCx exSb = \case
123

124 St -> (exSb,Star (pBCx, St, ty))
125 where ty = TEmp :=> TEmp
126

127 x@(V bi t’) -> (,) nSb (Variable (nCx, x, rTy’) nDeriv)
128 where
129 uRes = derive1’ (tail stream) exCx exSb t’
130 nDeriv = snd $ uRes
131 upSb = fst $ uRes
132

133 upCx = applySubsC upSb exCx
134 ty = either (error.show) id $ getType (V bi St) upCx
135

136 upType = getDType nDeriv
137

138 fusion = ty ‘fuse‘ upType
139

140 cast = either (error.show) fst $ fusion
141 rTy = either (error.show) snd $ fusion
142

143 nSb = upSb ++ cast
144

145 nCx = applySubsC nSb upCx
146 rTy’ = applyTSub nSb rTy



BIBLIOGRAPHY 46

147

148

149 x@(B bi _ lo t’) -> (,) nSb (Abstraction (nCx, x, nTy) nDeriv)
150 where
151 uRes = derive1’ (tail stream) exCx exSb t’
152 nDeriv = snd uRes
153 upSb = fst uRes
154

155 upCx = applySubsC upSb exCx
156 upType = getDType nDeriv
157

158 ty’ = either (error.show) id $ getType (V bi St) upCx
159 ty = TLoc lo ty’ :=> mempty
160

161 nTy = either (error.show) (snd) $ ty ‘fuse‘ upType
162 cast = either (error.show) (fst) $ ty’ ‘fuse‘ upType
163

164 nCx = applySubsC cast upCx
165 nSb = exSb ++ cast
166

167 xx@(P pTm lo sTm) -> (,) cSb (Application (sCx, xx, nTy’) pDeriv sDeriv)
168 where
169 pRes = derive1’ (tail stream) exCx exSb pTm
170 pDeriv = snd pRes
171 pSb = fst pRes
172

173 sRes = derive1’ (tail stream) exCx pSb sTm
174 sDeriv = snd sRes
175 sSb = fst sRes
176

177 sTy = getDType sDeriv
178 pTy = getDType pDeriv
179

180 npTy = applyTSub sSb pTy
181

182 npTy’ = TEmp :=> TLoc lo npTy
183

184 nTy = either (error.show) snd $ npTy’ ‘fuse‘ sTy
185 cast = either (error.show) fst $ npTy’ ‘fuse‘ sTy
186

187 cSb = sSb ++ cast
188 sCx = applySubsC cSb exCx
189 nTy’ = applyTSub cSb nTy
190

191 type Result a = Either TError a
192

193 -- | Same as "derive1" but safe, and applies all substitutions at the end.
194 derive2 :: Term -> Result Derivation
195 derive2 term = do
196 let (ppTerm,lTStream) = replaceInfer freshVarTypes term
197 bCx <- pBCx ppTerm -- pre build context
198 result <- derive2’ lTStream bCx emptySb ppTerm -- derive
199 let derivation = snd result -- take final derivation
200 let casts = fst result -- take the final casts
201 return $ applyTSubsD casts derivation -- apply them to the derivation and

return it
202

203 where
204 emptySb = []
205

206 -- | Pre builds the context by adding the constants and the binder types to the context.
207 pBCx termR = do
208 t1 <- buildContext emptyCx termR -- add constants
209 let t2 = parseBinders termR
210 chkUnique $ t1 ++ t2
211

212 -- | Replace the infer types with new fresh types so they do not overlap.
213 replaceInfer :: [T] -> Term -> (Term,[T]) -- ^ Return a Tuple formed out of the new pre-

processed term and the stream left.
214 replaceInfer stream t = case t of
215 St -> (St , stream)
216 V a n -> (V a nN, rStr)
217 where
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218 sStr = splitStream stream
219 lStr = fst sStr
220 rStr = snd sStr
221 nN = fst $ replaceInfer lStr n
222 P p l n -> (P nP l nN, lStr)
223 where
224 sStr = splitStream stream
225 lStr = snd sStr
226 sStr’ = splitStream . fst $ sStr
227 str1 = fst sStr’
228 str2 = snd sStr’
229 nP = fst $ replaceInfer str1 p
230 nN = fst $ replaceInfer str2 n
231

232 B b ty l n -> (B b nT l nN, rStr)
233 where
234 sStr = splitStream stream
235 lStr = fst sStr
236 rStr = snd sStr
237 nT = case ty of
238 TVar "inferA" :=> TVar "inferB" -> head lStr
239 _ -> ty
240 nN = fst $ replaceInfer (tail lStr) n
241

242 chkUnique :: Context -> Result Context
243 chkUnique x = if length x == length (nub $ fmap fst x)
244 then pure x
245 else Left $ ErrOverride "Variable double bind."
246

247 parseBinders = \case
248 St -> []
249 B bi t _ t’ -> (bi,t) : parseBinders t’
250 P t _ t’ -> parseBinders t ++ parseBinders t’
251 V _ t’ -> parseBinders t’
252

253 derive2’ :: [T] -> Context -> [TSubs] -> Term -> Result ([TSubs],Derivation)
254 derive2’ stream exCx exSb = \case
255

256 St -> do
257 let ty = TEmp :=> TEmp
258 let pbC = exCx
259 return $ (,) exSb (Star (pbC, St, ty))
260

261 x@(V bi t’) -> do
262 uRes <- derive2’ (tail stream) exCx exSb t’
263 let nDeriv = snd uRes
264 let upSb = fst uRes
265 let upCx = applySubsC upSb exCx
266 ty <- getType (V bi St) upCx
267 let upType = getDType nDeriv
268 fusion <- ty ‘fuse‘ upType
269 let cast = fst fusion
270 let rTy = snd fusion
271 let nSb = upSb ++ cast
272 let nCx = applySubsC nSb upCx
273 let rTy’ = applyTSub nSb rTy
274 return $ (,) nSb (Variable (nCx, x, rTy’) nDeriv)
275

276

277 x@(B bi _ lo t’) -> do
278 uRes <- derive2’ (tail stream) exCx exSb t’
279 let nDeriv = snd uRes
280 let upSb = fst uRes
281 let upCx = applySubsC upSb exCx
282 let upType = getDType nDeriv
283 ty’ <- getType (V bi St) upCx
284 let ty = TLoc lo ty’ :=> mempty
285 nTy <- snd <$> ty ‘fuse‘ upType
286 cast <- fst <$> ty’ ‘fuse‘ upType
287 let nCx = applySubsC cast upCx
288 let nSb = exSb ++ cast
289 return $ (,) nSb (Abstraction (nCx, x, nTy) nDeriv)
290
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291 xx@(P pTm lo sTm) -> do
292 pRes <- derive2’ (tail stream) exCx exSb pTm
293 let pDeriv = snd pRes
294 let pSb = fst pRes
295 sRes <- derive2’ (tail stream) exCx pSb sTm
296 let sDeriv = snd sRes
297 let sSb = fst sRes
298 let sTy = getDType sDeriv
299 let pTy = getDType pDeriv
300 let npTy = applyTSub sSb pTy
301 let npTy’ = TEmp :=> TLoc lo npTy
302 nTy <- snd <$> npTy’ ‘fuse‘ sTy
303 cast <- fst <$> npTy’ ‘fuse‘ sTy
304 let cSb = sSb ++ cast
305 let sCx = applySubsC cSb exCx
306 let nTy’ = applyTSub cSb nTy
307 return $ (,) cSb (Application (sCx, xx, nTy’) pDeriv sDeriv)
308

309 testD1 :: String -> IO ()
310 testD1 = putStrLn . pShow . derive1 . parseFMC
311

312 testD2 :: String -> IO ()
313 testD2 str = do
314 term <- return $ parseFMC str
315 derivation <- return $ derive2 term
316 either (putStrLn . show) (putStrLn) $ pShow <$> derivation
317

318 testD0 :: String -> IO ()
319 testD0 = putStrLn . pShow . derive0 . parseFMC
320

321 merge :: [TSubs] -- ^ Substitutions to be made in both types.
322 -> T -- ^ The consuming Type.
323 -> T -- ^ The merged Type.
324 -> ([TSubs],T,T) -- ^ The result containing: (new list of substitutions,
325 -- unmerged types remaining from the consuming type,
326 -- unmerged types remaining from the merged type).
327 merge exSubs x y =
328 let
329 x’ = normalForm . normaliseT . (applyTSub exSubs) $ x -- we use the already subtituted

form when consuming
330 y’ = normalForm . normaliseT . (applyTSub exSubs) $ y -- for both terms
331 in
332 case x’ of
333 TEmp -> case y’ of
334 TVar _ -> ((y’,mempty):exSubs,mempty,y’)
335 _ -> (exSubs,mempty,y’) -- mempty doesn’t change anything else
336

337 TVec [] -> merge exSubs TEmp y
338

339 TCon _ -> case y’ of
340 TEmp -> (exSubs,x’,mempty)
341 TVec [] -> (exSubs,x’,mempty)
342 TCon _ -> if x’ == y’ then (exSubs, mempty, mempty) else (exSubs,x’,y’)
343 t1 :=> t2 -> (exSubs,x’,y’)
344 TVar _ -> ((y’,x’) : exSubs, mempty, mempty)
345 TLoc _ _ -> (exSubs,x’,y’)
346 TVec (yy’: yys’) -> (finalSubs,finalX,remainY <> finalY)
347 where
348 (interSubs,interX,remainY) = merge exSubs x’ yy’
349 (finalSubs,finalX,finalY) = merge interSubs interX (TVec yys’)
350

351 TVar _ -> case y’ of
352 TVar _ -> if x’ == y’ then (exSubs,mempty,mempty) else ((x’,y’):exSubs,

mempty,mempty)
353 _ -> ((x’,y’):exSubs, mempty, mempty)
354

355 TLoc xl’ xt’ -> case y’ of
356 TEmp -> (exSubs,x’,mempty)
357 TVec [] -> (exSubs,x’,mempty)
358 TCon _ -> (exSubs,x’,y) -- home row and locations don’t interact
359 TVar _ -> (exSubs,x’,y) -- home row variable and locations don’t interact
360 TVec (yy’: yys’) -> (finalSubs,finalX,remainY <> finalY)
361 where
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362 (interSubs,interX,remainY) = merge exSubs x’ yy’
363 (finalSubs,finalX,finalY) = merge interSubs interX (TVec yys’)
364

365 TLoc yl’ yt’ -> if xl’ == yl’ then (finalSubs, TLoc xl’ finalX’, TLoc yl’ finalY’)
366 else (exSubs,x’,y’)
367 where (finalSubs, finalX’, finalY’) = merge exSubs xt’ yt’
368 _ :=> _ -> (exSubs,x’,y’)
369

370 TVec (xx’:xxs’) -> case y’ of
371 TEmp -> (exSubs,x’,mempty)
372 TVec [] -> (exSubs,x’,mempty)
373 TVec (_:_) -> (finalSubs, interXX’ <> finalXXs’, finalY’)
374 where
375 (interSubs, interXX’, interY’) = merge exSubs xx’ y’
376 (finalSubs, finalXXs’, finalY’) = merge interSubs (TVec xxs’)

interY’
377 _ -> (finalSubs, interXX’ <> finalXXs’, finalY’)
378 where
379 (interSubs, interXX’, interY’) = merge exSubs xx’ y’
380 (finalSubs, finalXXs’, finalY’) = merge interSubs (TVec xxs’)

interY’
381

382 ix’ :=> ox’ -> case y’ of
383 TEmp -> (exSubs,x’,mempty)
384 TVec [] -> (exSubs,x’,mempty)
385 TCon _ -> (exSubs,x’,y’)
386 TVar _ -> ((y’,x’):exSubs,mempty,mempty)
387 TLoc _ _ -> (exSubs,x’,y’)
388 TVec (yy’:yys’) -> (finalSubs, finalX’, interYY’ <> finalYY’)
389 where
390 (interSubs, interX’, interYY’) = merge exSubs x’ yy’
391 (finalSubs, finalX’, finalYY’) = merge interSubs interX’ (TVec

yys’)
392

393 iy’ :=> oy’ -> if x’’ == y’’ then (exSubs, mempty, mempty)
394 else if (finalSubs, finalL, finalR) == (finalSubs, TEmp, TEmp)
395 then (finalSubs, mempty, mempty)
396 else (exSubs, x’’, y’’)
397 where
398 x’’ = normalForm x’
399 y’’ = normalForm y’
400 (intSubs, leftIX’, leftIY’ ) = merge exSubs ix’ iy’
401 (finalSubs, rightIX’, rightIY’) = merge intSubs ox’ oy’
402 finalL = normaliseT $ leftIX’ <>

leftIY’
403 finalR = normaliseT $ rightIX’ <>

rightIY’
404

405 -- | Assess if two terms have no common unsaturated location
406 diffLoc :: T -> T -> Bool
407 diffLoc x y = (loc’ x ‘intersection‘ loc’ y) == empty
408 where
409 loc’ = loc . normaliseT . normalForm
410

411 loc :: T -> Set Lo
412 loc = \case
413 TEmp -> empty
414 TVec [] -> empty
415 TCon _ -> singleton Ho
416 TVar _ -> singleton Ho
417 _ :=> _ -> singleton Ho
418 TVec (x:xs) -> loc x ‘union‘ loc (TVec xs)
419 TLoc l _ -> singleton l
420

421 fuse :: T -> T -> Either TError ([TSubs],T)
422 fuse = \case
423 x@(xi :=> xo) -> \case
424 y@(yi :=> yo) ->
425 let
426 res = merge [] yi xo
427 in
428 case res of
429 (subs,rY,TEmp) -> pure $ (,) subs ((xi <> rY) :=> yo)
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430 (subs,TEmp,rX) -> pure $ (,) subs (xi :=> (yo <> rX))
431 (subs,rX,rY) -> if diffLoc rX rY
432 then Right $ (,) subs ((xi <> rY) :=> (yo <> rX))
433 else Left . ErrFuse $ "cannot fuse " ++ show x ++ " " ++ show y

++ " result: " ++ show res
434 y@(TVar _) -> Right ([(y,x)],mempty)
435 y -> Left . ErrFuse $ "cannot fuse " ++ show x ++ " and " ++ show y ++ ". Wrong

type Types - Use Function Types"
436 x -> \y -> Left . ErrFuse $ "cannot fuse " ++ show x ++ " and " ++ show y
437

438 applyTSub :: [TSubs] -> T -> T
439 applyTSub subs ty = normaliseT $ aux subs ty
440 where
441 aux = \case
442 [] -> id
443 xx@((xi,xo):xs) -> \case
444 TEmp -> TEmp
445 y@(TCon _ ) -> y
446 TLoc l t -> TLoc l (applyTSub xx t)
447 TVec y -> TVec $ applyTSub xx <$> y
448 yi :=> yo -> applyTSub xx yi :=> applyTSub xx yo
449 y@(TVar _) -> if y == xi then applyTSub xs xo else applyTSub xs y
450

451 getType :: Term -> Context -> Either TError T
452 getType = \case
453 t@(V b St) -> \case
454 [] -> Left $ ErrUndefT $
455 mconcat [ "Cannot Find type for binder: ", show b
456 , " in context. Have you defined it prior to calling it?" ]
457 ((b’, ty) : xs) -> if b == b’ then pure ty else getType t xs
458 St -> \_ -> pure $ mempty :=> mempty
459 t -> \_ -> Left . ErrNotBinder $ mconcat ["Attempting to get type of:", show t]
460

461 getDType :: Derivation -> T
462 getDType = \case
463 Star (_,_,t) -> t
464 Variable (_,_,t) _ -> t
465 Abstraction (_,_,t) _ -> t
466 Application (_,_,t) _ _ -> t
467

468 setDType :: Derivation -> T -> Derivation
469 setDType d t = case d of
470 Star (a,b,_) -> Star (a,b,t)
471 Variable (a,b,_) c -> Variable (a,b,t) c
472 Abstraction (a,b,_) c -> Abstraction (a,b,t) c
473 Application (a,b,_) c e -> Application (a,b,t) c e
474

475 getContext :: Derivation -> Context
476 getContext = \case
477 Star (c,_,_) -> c
478 Variable (c,_,_) _ -> c
479 Abstraction (c,_,_) _ -> c
480 Application (c,_,_) _ _ -> c
481

482 setContext :: Derivation -> Context -> Derivation
483 setContext = \case
484 Star (c,a,b) -> \c’ -> Star (c’,a,b)
485 Variable (c,a,b) n -> \c’ -> Variable (c’,a,b) n
486 Abstraction (c,a,b) n -> \c’ -> Abstraction (c’,a,b) n
487 Application (c,a,b) u r -> \c’ -> Application (c’,a,b) u r
488

489 setContextR :: Derivation -> Context -> Derivation
490 setContextR = \case
491 Star (c,a,b) -> \c’ -> Star (c’,a,b)
492 Variable (c,a,b) n -> \c’ -> Variable (c’,a,b) (setContextR n c’)
493 Abstraction (c,a,b) n -> \c’ -> Abstraction (c’,a,b) (setContextR n c’)
494 Application (c,a,b) u r -> \c’ -> Application (c’,a,b) (setContextR u c’) (setContextR r c’)
495

496 applyTSubsD :: [TSubs] -> Derivation -> Derivation
497 applyTSubsD subs = subCx subs . subTy subs
498 where
499 subCx :: [TSubs] -> Derivation -> Derivation
500 subCx s d = do
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501 let cx = getContext d
502 let nc = applySubsC s cx
503 setContextR d nc
504

505 subTy :: [TSubs] -> Derivation -> Derivation
506 subTy s d = case d of
507 Star _ -> d
508 Variable (a,b,t) n -> Variable (a,b, applyTSub s t) (subTy s n)
509 Abstraction (a,b,t) n -> Abstraction (a,b, applyTSub s t) (subTy s n)
510 Application (a,b,t) p n -> Application (a,b, applyTSub s t) (subTy s p) (subTy s n)
511

512 getTermType :: Term -> Result T
513 getTermType t = do
514 deriv <- derive2 t
515 return $ getDType deriv
516

517 applyDCxSubs :: [TSubs] -> Derivation -> Derivation
518 applyDCxSubs s d = res
519 where
520 ctx = getContext d
521 newCtx = applySubsC s ctx
522 res = setContext d newCtx
523

524 applySubsC :: [TSubs] -> Context -> Context
525 applySubsC x y = (\(b,bt) -> (b, applyTSub x bt)) <$> y
526

527 allCtx :: Derivation -> Context
528 allCtx x = case x of
529 Star _ -> getContext x
530 Variable _ _ -> getContext x
531 Application _ u r -> getContext x ++ allCtx u ++ allCtx r
532 Abstraction _ d -> getContext x ++ allCtx d
533

534 getDerivationT :: Derivation -> T
535 getDerivationT = \case
536 Star (_,_,t) -> t
537 Variable (_,_,t) _ -> t
538 Application (_,_,t) _ _ -> t
539 Abstraction (_,_,t) _ -> t
540

541 setDerivationT :: Derivation -> T -> Derivation
542 setDerivationT = \case
543 Star (a,b,t) -> \t’ -> Star (a,b,t’)
544 Variable (a,b,t) n -> \t’ -> Variable (a,b,t’) n
545 Application (a,b,t) u r -> \t’ -> Application (a,b,t’) u r
546 Abstraction (a,b,t) n -> \t’ -> Abstraction (a,b,t’) n
547

548 getLocation :: Term -> Lo
549 getLocation = \case
550 P _ l _ -> l
551 B _ _ l _ -> l
552 x -> error $ "should’t be reaching for location in term: " ++ show x ++ ".This should never

happen."
553

554 -- Show Instance
555 -- Inspired by previous CW.
556 instance Pretty Derivation where
557 pShow d = unlines (reverse strs)
558 where
559 (_, _, _, strs) = showD d
560 showT :: T -> String
561 showT = pShow
562 showC :: Context -> String
563 showC =
564 let sCtx (x, t) = show x ++ ":" ++ showT t ++ ", "
565 in \case
566 [] -> []
567 c -> (flip (++) " ") . mconcat $ sCtx <$> c
568 showJ :: Judgement -> String
569 showJ (cx, n, t) = mconcat $ showC cx : "|- " : pShow n : " : " : showT t : []
570 showL :: Int -> Int -> Int -> String
571 showL l m r = mconcat $ replicate l ’ ’ : replicate m ’-’ : replicate r ’ ’ : []
572 showD :: Derivation -> (Int, Int, Int, [String])
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573 showD (Star j) = (0, k, 0, [s, showL 0 k 0]) where s = showJ j; k = length s
574 showD (Variable j d’) = addrule (showJ j) (showD d’)
575 showD (Abstraction j d’) = addrule (showJ j) (showD d’)
576 showD (Application j d’ e) = addrule (showJ j) (sidebyside (showD d’) (showD e))
577 addrule :: String -> (Int, Int, Int, [String]) -> (Int, Int, Int, [String])
578 addrule x (l, m, r, xs)
579 | k <= m =
580 (ll, k, rr, (replicate ll ’ ’ ++ x ++ replicate rr ’ ’) : showL l m r : xs)
581 | k <= l + m + r =
582 (ll, k, rr, (replicate ll ’ ’ ++ x ++ replicate rr ’ ’) : showL ll k rr : xs)
583 | otherwise =
584 (0, k, 0, x : replicate k ’-’ : [replicate (- ll) ’ ’ ++ y ++ replicate (- rr)

’ ’ | y <- xs])
585 where
586 k = length x; i = div (m - k) 2; ll = l + i; rr = r + m - k - i
587 extend :: Int -> [String] -> [String]
588 extend i strs’ = strs’ ++ repeat (replicate i ’ ’)
589 sidebyside :: (Int, Int, Int, [String]) -> (Int, Int, Int, [String]) -> (Int, Int, Int

, [String])
590 sidebyside (l1, m1, r1, d1) (l2, m2, r2, d2)
591 | length d1 > length d2 =
592 (l1, m1 + r1 + 2 + l2 + m2, r2, [x ++ " " ++ y | (x, y) <- zip d1 (extend (l2

+ m2 + r2) d2)])
593 | otherwise =
594 (l1, m1 + r1 + 2 + l2 + m2, r2, [x ++ " " ++ y | (x, y) <- zip (extend (l1 +

m1 + r1) d1) d2])
595

596

597 pShow’ :: Derivation -> String
598 pShow’ d = unlines (reverse strs)
599 where
600 (_, _, _, strs) = showD d
601 showT :: T -> String
602 showT = pShow
603 showJ :: Judgement -> String
604 showJ (cx, n, t) = mconcat $ " " : "|- " : pShow n : " : " : showT t : []
605 showL :: Int -> Int -> Int -> String
606 showL l m r = mconcat $ replicate l ’ ’ : replicate m ’-’ : replicate r ’ ’ : []
607 showD :: Derivation -> (Int, Int, Int, [String])
608 showD (Star j) = (0, k, 0, [s, showL 0 k 0]) where s = showJ j; k = length s
609 showD (Variable j d’) = addrule (showJ j) (showD d’)
610 showD (Abstraction j d’) = addrule (showJ j) (showD d’)
611 showD (Application j d’ e) = addrule (showJ j) (sidebyside (showD d’) (showD e))
612 -- showD (Fusion j d’ e) = addrule (showJ j) (sidebyside (showD d’) (showD e))
613 addrule :: String -> (Int, Int, Int, [String]) -> (Int, Int, Int, [String])
614 addrule x (l, m, r, xs)
615 | k <= m =
616 (ll, k, rr, (replicate ll ’ ’ ++ x ++ replicate rr ’ ’) : showL l m r : xs)
617 | k <= l + m + r =
618 (ll, k, rr, (replicate ll ’ ’ ++ x ++ replicate rr ’ ’) : showL ll k rr : xs)
619 | otherwise =
620 (0, k, 0, x : replicate k ’-’ : [replicate (- ll) ’ ’ ++ y ++ replicate (- rr) ’ ’

| y <- xs])
621 where
622 k = length x; i = div (m - k) 2; ll = l + i; rr = r + m - k - i
623 extend :: Int -> [String] -> [String]
624 extend i strs’ = strs’ ++ repeat (replicate i ’ ’)
625 sidebyside :: (Int, Int, Int, [String]) -> (Int, Int, Int, [String]) -> (Int, Int, Int, [

String])
626 sidebyside (l1, m1, r1, d1) (l2, m2, r2, d2)
627 | length d1 > length d2 =
628 (l1, m1 + r1 + 2 + l2 + m2, r2, [x ++ " " ++ y | (x, y) <- zip d1 (extend (l2 +

m2 + r2) d2)])
629 | otherwise =
630 (l1, m1 + r1 + 2 + l2 + m2, r2, [x ++ " " ++ y | (x, y) <- zip (extend (l1 + m1 +

r1) d1) d2])

Listing 5.2: TypeChecker module for the FMCt
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